ترغب بنشر مسار تعليمي؟ اضغط هنا

We aim to review the internal structure and dynamics of the Abell 1351 cluster, shown to host a radio halo with a quite irregular shape. Our analysis is based on radial velocity data for 135 galaxies obtained at the Telescopio Nazionale Galileo. We c ombine galaxy velocities and positions to select 95 cluster galaxy members and analyse the internal dynamics of the whole cluster. We also examine X-ray data retrieved from Chandra and XMM archives. We measure the cluster redshift, <z>=0.325, the line-of-sight (LOS) velocity dispersion, sigma_v~1500 km/s, and the X-ray temperature, kT~9 keV. From both X-ray and optical data independently, we estimate a large cluster mass, in the 1--4 $10^{15}$ M$_odot$ range. We attribute the extremely high value of sigma_v to the bimodality in the velocity distribution. We find evidence of a significant velocity gradient and optical 3D substructure. The X-ray analysis also shows many features in favour of a complex cluster structure, probably supporting an ongoing merger of substructures in Abell 1351. The observational scenario agrees with the presence of two main subclusters in the northern region, each with its brightest galaxy (BCG1 and BCG2), detected as the two most important X-ray substructures with a rest-frame LOS velocity difference of Delta v~2500 km/s (in the rest frame) and probably being in large part aligned with the LOS. We conclude that Abell 1351 is a massive merging cluster. The details of the cluster structure allow us to interpret the quite asymmetric radio halo as a `normal halo plus a southern relic, strongly supporting a previous suggestion based only on inspection of radio and preliminary X-ray data.
The dependence of the luminosity function of cluster galaxies on the evolutionary state of the parent cluster is still an open issue, in particular as concern the formation/evolution of the brightest cluster galaxies. We plan to study the bright part of the LFs of a sample of very unrelaxed clusters (DARC clusters showing evidence of major, recent mergers) and compare them to a reference sample of relaxed clusters spanning a comparable mass and redshift range. Our analysis is based on the SDSS DR7 photometric data of ten, massive, and X-ray luminous clusters (0.2<z<0.3), always considering physical radii (R_200 or its fractions). We consider r band LFs and use the color-magnitude diagrams (r-i,r) to clean our samples as well to consider separately red and blue galaxies. We find that DARC and relaxed clusters give similar LF parameters and blue fractions. The two samples differ for their content of bright galaxies BGs, M_r<-22.5, since relaxed clusters have fewer BGs, in particular when considering the outer cluster region 0.5R_200<R<R_200 (by a factor two). However, the cumulative light in BGs is similar for relaxed and DARC samples. We conclude that BGs grow in luminosity and decrease in number as the parent clusters grow hierarchically in agreement with the BG formation by merging with other luminous galaxies.
Diffuse radio emission in galaxy clusters, and their connection with cluster mergers, are still debated. We seek to explore the internal dynamics of the radio halo cluster Abell 545. This cluster is also peculiar for hosting in its center a very brig ht, red, diffuse intracluster light due to an old, stellar population, so bright to be named as star pile. Our analysis is based on redshift data for 110 galaxies. We identify 95 cluster members and analyze the cluster internal dynamics by combining galaxy velocities and positions. We also use both photometric and X-ray data. We estimate the cluster redshift, z=0.1580, a velocity dispersion of 1200 km/s, and ICM temperature kT_X~8 keV. Our optical and X-ray analyses detect substructures. Optical data reveal three main galaxy clumps (center, NNW, and NE), and possibly a fourth clump at South. There is not a dominant galaxy and the four brightest galaxies avoid the cluster core (>~0.4h distant from the cluster center) and are >~1500 km/s far from the mean cluster velocity. The analysis of the X-ray surface brightness distribution provides us evidence of a disturbed dynamical phase. Located in the star pile region there is the brightest galaxies of the cluster core (CBCG) and a very compact elliptical galaxy. We show that the star pile has a similar redshift to that of the CBCG. Both the star pile and the CBCG are at rest in the cluster rest frame. The emerging picture of Abell 545 is that of a massive, M(R<1.6 h_70^-1 Mpc)=1.1-1.8x10^15 h_70^-1 Msun, very complex cluster with merging occurring along two directions. A545 gives another proof in the favor of the connection between cluster merger and extended, diffuse radio emission. The star pile, likely due to the process of a brightest galaxy forming in the cluster core. A545 represents a textbook cluster where to study the simultaneous formation of a galaxy system and its brightest galaxy.
The connection of cluster mergers with the presence of extended, diffuse radio sources in galaxy clusters is still debated. An interesting case is the rich, merging cluster Abell 520, containing a radio halo. A recent gravitational analysis has shown in this cluster the presence of a massive dark core suggested to be a possible problem for the current cold dark matter paradigm. We aim to obtain new insights into the internal dynamics of Abell 520 analyzing velocities and positions of member galaxies. Our analysis is based on redshift data for 293 galaxies in the cluster field obtained combining new redshift data for 86 galaxies acquired at the TNG with data obtained by CNOC team and other few data from the literature. We also use new photometric data obtained at the INT telescope. We combine galaxy velocities and positions to select 167 cluster members around z~0.201. We analyze the cluster structure using the weighted gap analysis, the KMM method, the Dressler-Shectman statistics and the analysis of the velocity dispersion profiles. We compare our results with those from X-ray, radio and gravitational lensing analyses. We find that Abell 520 is definitely a very complex system. Our results suggest that we are looking at a cluster forming at the crossing of three filaments of the large scale structure. In particular, we detect a filament aligned with the LOS and projected onto the center of the forming cluster. It might explain the apparent massive dark core shown by gravitational lensing analysis.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا