ترغب بنشر مسار تعليمي؟ اضغط هنا

114 - P.-H. Chang , W. Fang , T. Ozaki 2020
The magnetic anisotropy in MgO-capped MnPt films and its voltage control are studied using first-principles calculations. Sharp variation of the magnetic anisotropy with film thickness, especially in the Pt-terminated film, suggests that it may be wi dely tuned by adjusting the film thickness. In thick films the linear voltage control coefficient is as large as 1.5 and $-0.6$ pJ/Vm for Pt-terminated and Mn-terminated interfaces, respectively. The combination of a widely tunable magnetic anisotropy energy and a large voltage-control coefficient suggest that MgO-capped MnPt films can serve as a versatile platform for magnetic memory and antiferromagnonic applications.
Passive detection of special nuclear material (SNM) is challenging due to its inherently low rate of spontaneous emission of penetrating radiation, the relative ease of shielding, and the fluctuating and frequently overwhelming background. Active int errogation (AI), the use of external radiation to increase the emission rate of characteristic radiation from SNM, has long been considered to be a promising method to overcome those challenges. Current AI systems that incorporate radiography tend to use bremsstrahlung beams, which can deliver high radiation doses. Low-energy ion-driven nuclear reactions that produce multiple monoenergetic photons may be used as an alternative. The $^{12}$C(p,p)$^{12}$C is one such reaction that could produce large gamma-ray yields of highly penetrating 4.4- and 15.1-MeV gamma rays. This reaction does not directly produce neutrons below the $sim$19.7-MeV threshold, and the 15.1-MeV gamma-ray line is well matched to the photofission cross-section of $^{235}$U and $^{238}$U. We report the measurements of thick-target gamma-ray yields at 4.4 and 15.1 MeV from the $^{12}$C(p,p)$^{12}$C at proton energies of 19.5, 25, and 30 MeV. Measurements were made with two 3 EJ309 cylindrical liquid scintillation detectors and thermoluminescent dosimeters placed at 0 and 90 degrees. We estimate the highest yields of the 4.4- and 15.1-MeV gamma rays of 1.65$times10^{10}$ sr$^{-1}mu$ C$^{-1}$ and 4.47$times10^8$ sr$^{-1}mu$ C$^{-1}$ at a proton energy of 30 MeV, respectively. The yield of 4.4 and 15.1 MeV gamma rays in all experimental configurations is greater than a comparable deuteron-driven reaction that produces the same gamma-ray energies- $^{11}$B(d,n$gamma$)$^{12}$C. However, a two orders of magnitude increase of the neutron radiation dose is observed when the proton energy increases from 19.5 to 30 MeV.
130 - Q. Cui , J.-G. Cheng , W. Fan 2017
The perovskite SrIrO3 is an exotic narrow-band metal owing to a confluence of the strengths of the spin-orbit coupling (SOC) and the electron-electron correlations. It has been proposed that topological and magnetic insulating phases can be achieved by tuning the SOC, Hubbard interactions, and/or lattice symmetry. Here, we report that the substitution of nonmagnetic, isovalent Sn4+ for Ir4+ in the SrIr1-xSnxO3 perovskites synthesized under high pressure leads to a metal-insulator transition to an antiferromagnetic (AF) phase at TN > 225 K. The continuous change of the cell volume as detected by x-ray diffraction and the lamda-shape transition of the specific heat on cooling through TN demonstrate that the metal-insulator transition is of second-order. Neutron powder diffraction results indicate that the Sn substitution enlarges an octahedral-site distortion that reduces the SOC relative to the spin-spin exchange interaction and results in the type-G AF spin ordering below TN. Measurement of high-temperature magnetic susceptibility shows the evolution of magnetic coupling in the paramagnetic phase typical of weak itinerant-electron magnetism in the Sn-substituted samples. A reduced structural symmetry in the magnetically ordered phase leads to an electron gap opening at the Brillouin zone boundary below TN in the same way as proposed by Slater.
Hydrogen diffusion on metals exhibits rich quantum behavior, which is not yet fully understood. Using simulations, we show that many hydrogen diffusion barriers can be categorized into those with parabolic-tops and those with broad-tops. With parabol ic-top barriers, hydrogen diffusion evolves gradually from classical hopping to shallow tunneling to deep tunneling as the temperature decreases, and noticeable quantum effects persist at moderate temperatures. In contrast, with broad-top barriers quantum effects become important only at low temperatures and the classical to quantum transition is sharp, at which classical hopping and deep tunneling both occur. This coexistence indicates that more than one mechanism contributes to the quantum reaction rate. The conventional definition of the classical to quantum crossover temperature is invalid for the broad-tops, and we give a new definition. Extending this we propose a model to predict the transition temperature for broad-top diffusion, providing a general guide for theory and experiment.
88 - Hao Xiong , Y. W. Fan , X. Yang 2016
We investigate radiation-pressure induced generation of the frequency components at the difference-sideband in an optomechanical system, which beyond the conventional linearized description of optomechanical interactions between cavity fields and the mechanical oscillation. We analytically calculate amplitudes of these signals, and identify a simple square-root law for both the upper and lower difference-sideband generation which can describe the dependence of the intensities of these signals on the pump power. Further calculation shows that difference-sideband generation can be greatly enhanced via achieving the matching conditions. The effect of difference-sideband generation, which may have potential application for manipulation of light, is especially suited for on-chip optomechanical devices, where nonlinear optomechanical interaction in the weak coupling regime is within current experimental reach.
The ground state properties of He isotopes are studied in the nonlinear relativistic mean-field (RMF) theory with force parameters NL-SH and TM2. The modified Glauber model as a gatekeeper is introduced to check the calculations. The investigation sh ows that the RMF theory provides a good description on the properties of He isotopes. The many-body space information of 4He + neutrons are obtained reliably. As a product, the calculation gives a strong evidence for neutron halo in 5He.
127 - G. W. Fan , X. L. Cai , M. Fukuda 2013
The direct radiative capture process is well described by the spherical potential model. In order for the model to explain direct captures more accurately, the effect of the nuclear deformation has been added and analyzed in this work, since most nuc leuses are not spherical. The results imply that the nuclear deformation largely affects the direct capture and should be taken into account during discussing direct capture reactions.
When light is absorbed by a semiconductor, photoexcited charge carriers enhance the absorption of far-infrared radiation due to intraband transitions. We observe the opposite behavior in monolayer graphene, a zero-gap semiconductor with linear disper sion. By using time domain terahertz (THz) spectroscopy in conjunction with optical pump excitation, we observe a reduced absorption of THz radiation in photoexcited graphene. The measured spectral shape of the differential optical conductivity exhibits non-Drude behavior. We discuss several possible mechanisms that contribute to the observed low-frequency non-equilibrium optical response of graphene.
249 - W. Fan 2010
The strong coupling Eliashberg theory plus vertex correction is used to calculate maps of transition temperature (Tc) in parameter-space characterizing superconductivity. Based on these Tc maps, crossover behaviors are found when electron-phonon inte raction increases from weak-coupling region to strong coupling region. Especially, the combined interaction of vertex correction and Coulomb interaction can efficiently depress Tc from extremely high values in standard strong-coupling theory to reasonable values found in experiments and successfully explain the doing-dependent Tc of cuprate superconductors. The strong non-adiabatic effect is the barrier for high-Tc in compounds with compositions of light atoms and with high phonon frequencies.
307 - Z. G. Huang , H. Q. Lu , W. Fang 2009
Applying the parametrization of dark energy density, we can construct directly independent-model potentials. In Born-Infeld type phantom dark energy model, we consider four special parametrization equation of state parameter. The evolutive behavior o f dark energy density with respect to red-shift $z$, potentials with respect to $phi$ and $z$ are shown mathematically. Moreover, we investigate the effect of parameter $eta$ upon the evolution of the constructed potential with respect to $z$. These results show that the evolutive behavior of constructed Born-Infeld type dark energy model is quite different from those of the other models.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا