ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic reconnection (MR) is a key physical concept explaining the addition of magnetic flux to the magnetotail and closed flux lines back-motion to the dayside magnetosphere. This scenario elaborated by citet{dung63}, can explain many aspects of so lar wind-magnetosphere interaction processes, including substorms. However, neither the Dungey model nor its numerous modifications were able to explain fully the onset conditions for MR in the tail. In this paper, we introduce new onset conditions for forced MR in the tail. We call our scenario the windsock memory conditioned ram pressure effect. Our non-flux-transfer associated forcing is introduced by a combination of large-scale windsock motions exhibiting memory effects and solar wind dynamic pressure actions on the nightside magnetopause during northward oriented IMF. Using global MHD GUMICS-4 simulation results, upstream data from WIND, magnetosheath data from Cluster-1 and distant-tail data from the two-probe ARTEMIS mission, we show that the simultaneous occurrence of vertical windsock motions of the magnetotail and enhanced solar wind dynamic pressure introduces strong nightside disturbances, including enhanced electric fields and persistent vertical cross-tail shear flows. These perturbations, associated with a stream interaction region in the solar wind, drive MR in the tail during episodes of northward oriented interplanetary magnetic field (IMF). We detect MR indirectly, observing plasmoids in the tail and ground based signatures of Earthward moving fast flows. We also consider the application to solar system planets and close-in exoplanets, where the proposed scenario can elucidate some new aspects of solar/stellar wind - magnetosphere interactions.
Petschek-type time-dependent reconnection (TDR) and quasi-stationary reconnection (QSR) models are considered to understand reconnection outflow structures and the features of the associated locally generated turbulence in the solar wind. We show tha t the outflow structures, such as discontinuites, Kelvin-Helmholtz (KH) unstable flux tubes or continuous space filling flows cannot be distinguished from one-point WIND measurements. In both models the reconnection outflows can generate more or less spatially extended turbulent boundary layers (TBDs). The structure of an unique extended reconnection outflow is investigated in detail. The analysis of spectral scalings and break locations show that reconnection outflows can control the local field and plasma conditions which may play in favor of one or another turbulent dissipation mechanisms with their characteristic scales and wavenumbers.
190 - Z. Voros , P. Mai , M. Sassermann 2014
We experimentally analyze Rayleigh scattering in coupled planar microcavities. We show that the correlations of the disorder in the two cavities lead to inter-branch scattering of polaritons, that would otherwise be forbidden by symmetry. These longi tudinal correlations can be inferred from the strength of the inter-branch scattering.
208 - Z. Voros , G. Weihs 2014
In this paper we theoretically study how structural disorder in coupled semiconductor heterostructures influences single-particle scattering events that would otherwise be forbidden by symmetry. We extend the model of V. Savona to describe Rayleigh s cattering in coupled planar microcavity structures, and answer the question, whether effective filter theories can be ruled out. They can.
Magnetic flux tubes in the solar wind can be twisted as they are transported from the solar surface, where the tubes are twisted owing to photospheric motions. It is suggested that the twisted magnetic tubes can be detected as the variation of total (thermal+magnetic) pressure during their passage through observing satellite. We show that the total pressure of several observed twisted tubes resembles the theoretically expected profile. The twist of isolated magnetic tube may explain the observed abrupt changes of magnetic field direction at tube walls. We have also found some evidence that the flux tube walls can be associated with local heating of the plasma and elevated proton and electron temperatures. For the tubes aligned with the Parker spiral, the twist angle can be estimated from the change of magnetic field direction. Stability analysis of twisted tubes shows that the critical twist angle of the tube with a homogeneous twist is 70$^0$, but the angle can further decrease owing to the motion of the tube with regards to the solar wind stream. The tubes with a stronger twist are unstable to the kink instability, therefore they probably can not reach 1 AU.
Solar wind plasma is supposed to be structured in magnetic flux tubes carried from the solar surface. Tangential velocity discontinuity near the boundaries of individual tubes may result in Kelvin-Helmholtz instability, which may contribute into the solar wind turbulence. While the axial magnetic field may stabilize the instability, a small twist in the magnetic field may allow to sub-Alfvenic motions to be unstable. We aim to study the Kelvin-Helmholtz instability of twisted magnetic flux tube in the solar wind with different configurations of external magnetic field. We use magnetohydrodynamic equations in the cylindrical geometry and derive the dispersion equations governing the dynamics of twisted magnetic flux tube moving along its axis in the cases of untwisted and twisted external fields. Then we solve the dispersion equations analytically and numerically and found thresholds for Kelvin-Helmholtz instability in both cases of external field. Both analytical and numerical solutions show that the Kelvin-Helmholtz instability is suppressed in the twisted tube by external axial magnetic field for sub-Alfvenic motions. However, even small twist in the external magnetic field allows the Kelvin-Helmholtz instability to be developed for any sub-Alfvenic motions. The unstable harmonics correspond to vortices with high azimuthal mode numbers, which are carried by the flow. Twisted magnetic flux tubes can be unstable to Kelvin-Helmholtz instability when they move with small speed relative to main solar wind stream, then the Kelvin-Helmholtz vortices may significantly contribute into the solar wind turbulence.
We propose and theoretically analyze a new scheme for generating hyper-entangled photon pairs in a system of polaritons in coupled planar microcavities. Starting from a microscopic model, we evaluate the relevant parametric scattering processes and n umerically simulate the phonon-induced noise background under continuous-wave excitation. Our results show that, compared to other polariton entanglement proposals, our scheme enables the generation of photon pairs that are entangled in both path and polarization degrees of freedom, and simultaneously leads to a strong reduction of the photoluminesence noise background. This can significantly improve the fidelity of the entangled photon pairs under realistic experimental conditions.
126 - L. Einkemmer , Z. Voros , G. Weihs 2013
Entanglement generation in microcavity exciton-polaritons is an interesting application of the peculiar properties of these half-light/half-matter quasiparticles. In this paper we theoretically investigate their luminescence dynamics and entanglement formation in single, double, and triple cavities. We derive general expressions and selection rules for polariton-polariton scattering. We evaluate a number of possible parametric scattering schemes in terms of entanglement, and identify the ones that are experimentally most promising.
Magnetic reconnection (MR) in Earths magnetotail is usually followed by a systemwide redistribution of explosively released kinetic and thermal energy. Recently, multispacecraft observations from the THEMIS mission were used to study localized explos ions associated with MR in the magnetotail so as to understand subsequent Earthward propagation of MR outbursts during substorms. Here we investigate plasma and magnetic field fluctuations/structures associated with MR exhaust and ion-ion kink mode instability during a well documented MR event. Generation, evolution and fading of kinklike oscillations are followed over a distance of 70 000 km from the reconnection site in the midmagnetotail to the more dipolar region near the Earth. We have found that the kink oscillations driven by different ion populations within the outflow region can be at least 25 000 km from the reconnection site.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا