ترغب بنشر مسار تعليمي؟ اضغط هنا

184 - Mark Vogelsberger 2014
We introduce the Illustris Project, a series of large-scale hydrodynamical simulations of galaxy formation. The highest resolution simulation, Illustris-1, covers a volume of $(106.5,{rm Mpc})^3$, has a dark mass resolution of ${6.26 times 10^{6},{rm M}_odot}$, and an initial baryonic matter mass resolution of ${1.26 times 10^{6},{rm M}_odot}$. At $z=0$ gravitational forces are softened on scales of $710,{rm pc}$, and the smallest hydrodynamical gas cells have an extent of $48,{rm pc}$. We follow the dynamical evolution of $2times 1820^3$ resolution elements and in addition passively evolve $1820^3$ Monte Carlo tracer particles reaching a total particle count of more than $18$ billion. The galaxy formation model includes: primordial and metal-line cooling with self-shielding corrections, stellar evolution, stellar feedback, gas recycling, chemical enrichment, supermassive black hole growth, and feedback from active galactic nuclei. At $z=0$ our simulation volume contains about $40,000$ well-resolved galaxies covering a diverse range of morphologies and colours including early-type, late-type and irregular galaxies. The simulation reproduces reasonably well the cosmic star formation rate density, the galaxy luminosity function, and baryon conversion efficiency at $z=0$. It also qualitatively captures the impact of galaxy environment on the red fractions of galaxies. The internal velocity structure of selected well-resolved disk galaxies obeys the stellar and baryonic Tully-Fisher relation together with flat circular velocity curves. In the well-resolved regime the simulation reproduces the observed mix of early-type and late-type galaxies. Our model predicts a halo mass dependent impact of baryonic effects on the halo mass function and the masses of haloes caused by feedback from supernova and active galactic nuclei.
230 - Mark Vogelsberger 2014
Previous simulations of the growth of cosmic structures have broadly reproduced the cosmic web of galaxies that we see in the Universe, but failed to create a mixed population of elliptical and spiral galaxies due to numerical inaccuracies and incomp lete physical models. Moreover, because of computational constraints, they were unable to track the small scale evolution of gas and stars to the present epoch within a representative portion of the Universe. Here we report a simulation that starts 12 million years after the Big Bang, and traces 13 billion years of cosmic evolution with 12 billion resolution elements in a volume of $(106.5,{rm Mpc})^3$. It yields a reasonable population of ellipticals and spirals, reproduces the distribution of galaxies in clusters and statistics of hydrogen on large scales, and at the same time the metal and hydrogen content of galaxies on small scales.
We study the stellar discs and spheroids in eight simulations of galaxy formation within Milky Way-mass haloes in a Lambda Cold Dark Matter cosmology. A first paper in this series concentrated on disc properties. Here, we extend this analysis to stud y how the formation history, structure and dynamics of discs and spheroids relate to the assembly history and structure of their haloes. We find that discs are generally young, with stars spanning a wide range in stellar age: the youngest stars define thin discs and have near-circular orbits, while the oldest stars form thicker discs which rotate ~2 times slower than the thin components, and have 2-3 times larger velocity dispersions. Unlike the discs, spheroids form early and on short time-scales, and are dominated by velocity dispersion. We find great variety in their structure. The inner regions are bar- or bulge-like, while the extended outer haloes are rich in complex non-equilibrium structures such as stellar streams, shells and clumps. Our discs have very high in-situ fractions, i.e. most of their stars formed in the disc itself. Nevertheless, there is a non-negligible contribution (~15 percent) from satellites that are accreted on nearly coplanar orbits. The inner regions of spheroids also have relatively high in-situ fractions, but 65-85 percent of their outer stellar population is accreted. We analyse the circular velocities, rotation velocities and velocity dispersions of our discs and spheroids, both for gas and stars, showing that the dynamical structure is complex as a result of the non-trivial interplay between cooling and SN heating.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا