ترغب بنشر مسار تعليمي؟ اضغط هنا

Crystal chemistry of M(BH4)n, where M is a 2nd-4th period element, is reviewed. It is shown that except certain cases, the BH4 group has a nearly ideal tetrahedral geometry. Corrections of the experimentally determined H-positions, accounting for the displacement of the electron cloud relative to an average nuclear position and for a libration of the BH4 group, are considered. Recent studies of structural evolution with temperature and pressure are reviewed. Some borohydrides involving less electropositive metals (e.g. Mg and Zn) reveal porous structures and dense interpenetrated frameworks, thus resembling metal-organic frameworks (MOFs). Analysis of phase transitions, and the related changes of the coordination geometries for M atoms and BH4 groups, suggests that the directional BH4...M interaction is at the origin of the structural complexity of borohydrides. The ways to influence their stability by chemical modification are discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا