ترغب بنشر مسار تعليمي؟ اضغط هنا

196 - Viviana Gammaldi 2014
It has been shown that the gamma-ray flux observed by HESS from the J1745-290 Galactic Center source is well fitted as the secondary gamma-rays photons generated from Dark Matter annihilating into Standard Model particles in combination with a simple power law background. The neutrino flux expected from such Dark Matter source has been also analyzed. The main results of such analyses for 50 TeV Dark Matter annihilating into W+W- gauge boson and preliminary results for antiprotons are presented.
The gamma-ray fluxes observed by the High Energy Stereoscopic System (HESS) from the J1745-290 Galactic Center source is well fitted by the secondary photons coming from Dark Matter (DM) annihilation in particle-antiparticle standard model pairs over a diffuse power-law background. The spectral features of the signal are consistent with different channels: light quarks, electro-weak gauge bosons and top-antitop production. The amount of photons and morphology of the signal localized within a region of few parsecs, require compressed DM profiles as those resulting from baryonic contraction, which offer large enhancements in the signal over DM alone simulations. The fits return a heavy WIMP, with a mass above 10 TeV, but well below the unitarity limit for thermal relic annihilation. The fitted background spectral index is compatible with the Fermi-Large Area Telescope (LAT) data from the same region. This possibility can be potentially tested with the observations of other high energy cosmic rays.
If the present dark matter in the Universe annihilates into Standard Model particles, it must contribute to the gamma ray fluxes detected on the Earth. The magnitude of such contribution depends on the particular dark matter candidate, but certain fe atures of the produced spectra may be analyzed in a rather model-independent fashion. In this communication we briefly revise the complete photon spectra coming from WIMP annihilation into Standard Model particle-antiparticle pairs obtained by extensive Monte Carlo simulations and consequent fitting functions presented by Dombriz et al. in a wide range of WIMP masses. In order to illustrate the usefulness of these fitting functions, we mention how these results may be applied to the so-called brane-world theories whose fluctuations, the branons, behave as WIMPs and therefore may spontaneously annihilate in SM particles. The subsequent $gamma$-rays signal in the framework of dark matter indirect searches from Milky Way dSphs and Galactic Center may provide first evidences for this scenario.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا