ترغب بنشر مسار تعليمي؟ اضغط هنا

Scripting code may present maintenance problems in the long run. There is, then, the call for methodologies that make it possible to control the properties of programs written in dynamic languages in an automatic fashion. We introduce Lucretia, a cor e language with an introspection primitive. Lucretia is equipped with a (retrofitted) static type system based on local updates of types that describe the structure of objects being used. In this way, we deal with one of the most dynamic features of scripting languages, that is, the runtime modification of object interfaces. Judgements in our systems have a Hoare-like shape, as they have a precondition and a postcondition part. Preconditions describe static approximations of the interfaces of visible objects before a certain expression has been executed and postconditions describe them after its execution. The field update operation complicates the issue of aliasing in the system. We cope with it by introducing intersection types in method signatures.
Object-oriented scripting languages such as JavaScript or Python gain in popularity due to their flexibility. Still, the growing code bases written in the languages call for methods that make possible to automatically control the properties of the pr ograms that ensure their stability in the running time. We propose a type system, called Lucretia, that makes possible to control the object structure of languages with reflection. Subject reduction and soundness of the type system with respect to the semantics of the language is proved.
75 - Viviana Bono 2012
We present a calculus that models a form of process interaction based on copyless message passing, in the style of Singularity OS. The calculus is equipped with a type system ensuring that well-typed processes are free from memory faults, memory leak s, and communication errors. The type system is essentially linear, but we show that linearity alone is inadequate, because it leaves room for scenarios where well-typed processes leak significant amounts of memory. We address these problems basing the type system upon an original variant of session types.
We present PolySing#, a calculus that models process interaction based on copyless message passing, in the style of Singularity OS. We equip the calculus with a type system that accommodates polymorphic endpoint types, which are a variant of polymorp hic session types, and we show that well-typed processes are free from faults, leaks, and communication errors. The type system is essentially linear, although linearity alone may leave room for scenarios where well-typed processes leak memory. We identify a condition on endpoint types that prevents these leaks from occurring.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا