ترغب بنشر مسار تعليمي؟ اضغط هنا

We use the Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey (CANDELS) GOODS-S multi-wavelength catalog to identify counterparts for 20 Lya Emitting (LAE) galaxies at z=2.1. We build several types of stacked Spectral Energy Distributions (SEDs) of these objects. We combine photometry to form average and median flux-stacked SEDs, and postage stamp images to form average and median image-stacked SEDs. We also introduce scaled flux stacks that eliminate the influence of variation in overall brightness. We use the SED fitting code SpeedyMC to constrain the physical properties of individual objects and stacks. Our LAEs at z = 2.1 have stellar masses ranging from 2x10^7 Msun - 8x10^9 Msun (median = 3x10^8 Msun), ages ranging from 4 Myr to 500 Myr (median =100 Myr), and E(B-V) between 0.02 and 0.24 (median = 0.12). We do not observe strong correlations between Lya equivalent width (EW) and stellar mass, age, or E(B-V). The Lya radiative transfer (q) factors of our sample are predominantly close to one and do not correlate strongly with EW or E(B-V), implying that Lya radiative transfer prevents Lya photons from resonantly scattering in dusty regions. The SED parameters of the flux stacks match the average and median values of the individual objects, with the flux-scaled median SED performing best with reduced uncertainties. Median image-stacked SEDs provide a poor representation of the median individual object, and none of the stacking methods captures the large dispersion of LAE properties.
We present GalMC (Acquaviva et al 2011), our publicly available Markov Chain Monte Carlo algorithm for SED fitting, show the results obtained for a stacked sample of Lyman Alpha Emitting galaxies at z ~ 3, and discuss the dependence of the inferred S ED parameters on the assumptions made in modeling the stellar populations. We also introduce SpeedyMC, a version of GalMC based on interpolation of pre-computed template libraries. While the flexibility and number of SED fitting parameters is reduced with respect to GalMC, the average running time decreases by a factor of 20,000, enabling SED fitting of each galaxy in about one second on a 2.2GHz MacBook Pro laptop, and making SpeedyMC the ideal instrument to analyze data from large photometric galaxy surveys.
We study the physical properties of 216 z ~ 2.1 LAEs discovered in an ultra-deep narrow-band MUSYC image of the ECDF-S. We fit their stacked Spectral Energy Distribution (SED) using Charlot & Bruzual templates. We consider star formation histories pa rametrized by the e-folding time parameter tau, allowing for exponentially decreasing (tau>0), exponentially increasing (tau<0), and constant star formation rates. These LAEs are characterized by best fit parameters and 68% confidence intervals of log(M_*/M_sun)=8.6[8.4-9.1], E(B-V)=0.22[0.00-0.31], tau=-0.02[(-4)-18] Gyr, and age_ SF=0.018[0.009-3] Gyr. Thus, we obtain robust measurements of low stellar mass and dust content, but we cannot place meaningful constraints on the age or star formation history of the LAEs. We also calculate the instantaneous SFR to be 35[0.003-170] M_sun/yr, with its average over the last 100 Myr before observation giving <SFR>_100=4[2-30] M_sun/yr. When we compare the results for the same star formation history, LAEs at z~2.1 are dustier and show higher instantaneous SFRs than z~3.1 LAEs, while the observed stellar masses of the two samples seem consistent. LAEs appear to occupy the low-mass end of the distribution of star forming galaxies at z~2. We perform SED fitting on several sub-samples selected based on photometric properties and find that LAE sub-samples at z~2.1 exhibit heterogeneous properties. The IRAC-bright, UV-bright and red LAEs have the largest stellar mass and dust reddening. The UV-faint, IRAC-faint, and high equivalent width LAE sub-samples appear less massive (<10^9 M_sun) and less dusty, with E(B-V) consistent with zero.
We present constraints on cosmological parameters based on a sample of Sunyaev-Zeldovich-selected galaxy clusters detected in a millimeter-wave survey by the Atacama Cosmology Telescope. The cluster sample used in this analysis consists of 9 opticall y-confirmed high-mass clusters comprising the high-significance end of the total cluster sample identified in 455 square degrees of sky surveyed during 2008 at 148 GHz. We focus on the most massive systems to reduce the degeneracy between unknown cluster astrophysics and cosmology derived from SZ surveys. We describe the scaling relation between cluster mass and SZ signal with a 4-parameter fit. Marginalizing over the values of the parameters in this fit with conservative priors gives sigma_8 = 0.851 +/- 0.115 and w = -1.14 +/- 0.35 for a spatially-flat wCDM cosmological model with WMAP 7-year priors on cosmological parameters. This gives a modest improvement in statistical uncertainty over WMAP 7-year constraints alone. Fixing the scaling relation between cluster mass and SZ signal to a fiducial relation obtained from numerical simulations and calibrated by X-ray observations, we find sigma_8 = 0.821 +/- 0.044 and w = -1.05 +/- 0.20. These results are consistent with constraints from WMAP 7 plus baryon acoustic oscillations plus type Ia supernoava which give sigma_8 = 0.802 +/- 0.038 and w = -0.98 +/- 0.053. A stacking analysis of the clusters in this sample compared to clusters simulated assuming the fiducial model also shows good agreement. These results suggest that, given the sample of clusters used here, both the astrophysics of massive clusters and the cosmological parameters derived from them are broadly consistent with current models.
We present a new calibration method based on cross-correlations with WMAP and apply it to data from the Atacama Cosmology Telescope (ACT). ACTs observing strategy and map making procedure allows an unbiased reconstruction of the modes in the maps ove r a wide range of multipoles. By directly matching the ACT maps to WMAP observations in the multipole range of 400 < ell < 1000, we determine the absolute calibration with an uncertainty of 2% in temperature. The precise measurement of the calibration error directly impacts the uncertainties in the cosmological parameters estimated from the ACT power spectra. We also present a combined map based on ACT and WMAP data that has high signal-to-noise over a wide range of multipoles.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا