ترغب بنشر مسار تعليمي؟ اضغط هنا

Simple analytical parametrizations for the ground-state energy of the one-dimensional repulsive Hubbard model are developed. The charge-dependence of the energy is parametrized using exact results extracted from the Bethe-Ansatz. The resulting parame trization is shown to be in better agreement with highly precise data obtained from fully numerical solution of the Bethe-Ansatz equations than previous expressions [Lima et al., Phys. Rev. Lett. 90, 146402 (2003)]. Unlike these earlier proposals, the present parametrization correctly predicts a positive Mott gap at half filling for any U>0. The construction is extended to spin-dependent phenomena by parametrizing the magnetization-dependence of the ground-state energy using further exact results and numerical benchmarking. Lastly, the parametrizations developed for the spatially uniform model are extended by means of a simple local-density-type approximation to spatially inhomogeneous models, e.g., in the presence of impurities, external fields or trapping potentials. Results are shown to be in excellent agreement with independent many-body calculations, at a fraction of the computational cost.
A combined analytical and numerical study is performed of the mapping between strongly interacting fermions and weakly interacting spins, in the framework of the Hubbard, t-J and Heisenberg models. While for spatially homogeneous models in the thermo dynamic limit the mapping is thoroughly understood, we here focus on aspects that become relevant in spatially inhomogeneous situations, such as the effect of boundaries, impurities, superlattices and interfaces. We consider parameter regimes that are relevant for traditional applications of these models, such as electrons in cuprates and manganites, and for more recent applications to atoms in optical lattices. The rate of the mapping as a function of the interaction strength is determined from the Bethe-Ansatz for infinite systems and from numerical diagonalization for finite systems. We show analytically that if translational symmetry is broken through the presence of impurities, the mapping persists and is, in a certain sense, as local as possible, provided the spin-spin interaction between two sites of the Heisenberg model is calculated from the harmonic mean of the onsite Coulomb interaction on adjacent sites of the Hubbard model. Numerical calculations corroborate these findings also in interfaces and superlattices, where analytical calculations are more complicated.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا