ترغب بنشر مسار تعليمي؟ اضغط هنا

59 - Steph Foulds , Viv Kendon , 2020
Quantum entanglement is essential to the development of quantum computation, communications, and technology. The controlled SWAP test, widely used for state comparison, can be adapted to an efficient and useful test for entanglement of a pure state. Here we show that the test can evidence the presence of entanglement (and further, genuine n-qubit entanglement), can distinguish entanglement classes, and that the concurrence of a two-qubit state is related to the tests output probabilities. We also propose a multipartite measure of entanglement that acts similarly for n-qubit states. The number of copies required to detect entanglement decreases for larger systems, to four on average for many (n>8) qubits for maximally entangled states. For non-maximally entangled states, the average number of copies of the test state required to detect entanglement increases with decreasing entanglement. Furthermore, the results are robust to second order when typical small errors are introduced to the state under investigation.
We construct an Ising Hamiltonian with an engineered energy landscape such that it has a local energy minimum which is near to the true global minimum solution, and further away from a false minimum. Using a technique established in previous experime nts, we design our experiment such that (at least on timescales relevant to our study) the false minimum is reached preferentially in forward annealing due to high levels of quantum fluctuations. This allows us to demonstrate the key principle of reverse annealing, that the solution space can be searched locally, preferentially finding nearby solutions, even in the presence of a false minimum. The techniques used here are, to the best of our knowledge, distinct from previously used experimental techniques, and allow us to probe the fundamental search range of the device in a way which has not been previously explored. We perform these experiments on two flux qubit quantum annealers, one with higher noise levels than the other. We find evidence that the lower noise device is more likely to find the more distant energy minimum (the false minimum in this case), suggesting that reducing noise fundamentally increases the range over which flux qubit quantum annealers are able to search. Our work explains why reducing the noise leads to improved performance on these quantum annealers. This supports the idea that these devices may be able to search over broad regions of the solution space quickly, one of the core reasons why quantum annealers are viewed as a potential avenue for a quantum computational advantage.
81 - Viv Kendon 2020
Quantum walks are widely and successfully used to model diverse physical processes. This leads to computation of the models, to explore their properties. Quantum walks have also been shown to be universal for quantum computing. This is a more subtle result than is often appreciated, since it applies to computations run on qubit-based quantum computers in the single walker case, and physical quantum walks in the multi-walker case (quantum cellular automata). Nonetheless, quantum walks are powerful tools for quantum computing when correctly applied. In this paper, I explain the relationship between quantum walks as models and quantum walks as computational tools, and give some examples of their application in both contexts.
167 - Viv Kendon 2020
Computational methods are the most effective tools we have besides scientific experiments to explore the properties of complex biological systems. Progress is slowing because digital silicon computers have reached their limits in terms of speed. Othe r types of computation using radically different architectures, including neuromorphic and quantum, promise breakthroughs in both speed and efficiency. Quantum computing exploits the coherence and superposition properties of quantum systems to explore many possible computational paths in parallel. This provides a fundamentally more efficient route to solving some types of computational problems, including several of relevance to biological simulations. In particular, optimisation problems, both convex and non-convex, feature in many biological models, including protein folding and molecular dynamics. Early quantum computers will be small, reminiscent of the early days of digital silicon computing. Understanding how to exploit the first generation of quantum hardware is crucial for making progress in both biological simulation and the development of the next generations of quantum computers. This review outlines the current state-of-the-art and future prospects for quantum computing, and provides some indications of how and where to apply it to speed up bottlenecks in biological simulation.
We present a method to experimentally realize large-scale permutation-symmetric Hamiltonians for continuous-time quantum protocols such as quantum walk and adiabatic quantum computation. In particular, the method can be used to perform an encoded con tinuous-time quantum search on a hypercube graph with 2^n vertices encoded into 2n qubits. We provide details for a realistically achievable implementation in Rydberg atomic systems. Although the method is perturbative, the realization is always achieved at second order in perturbation theory, regardless of the size of the mapped system. This highly efficient mapping provides a natural set of problems which are tractable both numerically and analytically, thereby providing a powerful tool for benchmarking quantum hardware and experimentally investigating the physics of continuous-time quantum protocols.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا