ترغب بنشر مسار تعليمي؟ اضغط هنا

138 - Vithal Tilvi 2014
The observed deficit of strongly Lyman-alpha emitting galaxies at z>6.5 is attributed to either increasing neutral hydrogen in the intergalactic medium (IGM) and/or to the evolving galaxy properties. To investigate this, we have performed very deep n ear-IR spectroscopy of z>7 galaxies using MOSFIRE on the Keck-I Telescope. We measure the Lyman-alpha fraction at z~8 (combined photometric redshift peak at z=7.7) using two methods. First, we derived NLy{alpha}/Ntot directly using extensive simulations to correct for incompleteness. Second, we used a Bayesian formalism (introduced by Treu et al. 2012) that compares the z>7 galaxy spectra to models of the Lyman-alpha equivalent width (WLy{alpha}) distribution at z~6. We explored two simple evolutionary scenarios: smooth evolution where Lyman-alpha is attenuated in all galaxies by a constant factor (perhaps owing to processes from galaxy evolution or a slowly increasing IGM opacity), and patchy evolution where Lyman-alpha is blocked in some fraction of galaxies (perhaps due to the IGM being opaque along only some fraction of sightlines). The Bayesian formalism places stronger constraints compared with the direct method. Combining our data with that in the literature we find that at z~8 the Lyman-alpha fraction has dropped by a factor >3(84% confidence interval) using both the smooth and patchy scenarios compared to the z~6 values. Furthermore, we find a tentative evidence that the data favor the patchy scenario over smooth (with positive Bayesian evidence), extending trends observed at z~7 to higher redshift. If this decrease is a result of reionization as predicted by theory, then our data imply the volume averaged neutral hydrogen fraction in the IGM to be >0.3 suggesting that the reionization of the universe is in progress at z~8.
Rapid mass assembly, likely from mergers or smooth accretion, has been predicted to play a vital role in star-formation in high-redshift Lyman-alpha (Lya) emitters. Here we predict the major merger, minor merger, and smooth accreting Lya emitter frac tion from z~3 to z~7 using a large dark matter simulation, and a simple physical model that is successful in reproducing many observations over this large redshift range. The central tenet of this model, different from many of the earlier models, is that the star-formation in Lya emitters is proportional to the mass accretion rate rather than the total halo mass. We find that at z~3, nearly 35% of the Lya emitters accrete their mass through major (3:1) mergers, and this fraction increases to about 50% at z~7. This imply that the star-formation in a large fraction of high-redshift Lya emitters is driven by mergers. While there is discrepancy between the model predictions and observed merger fractions, some of this difference (~15%) can be attributed to the mass-ratio used to define a merger in the simulation. We predict that future, deeper observations which use a 3:1 definition of major mergers will find >30% major merger fraction of Lya emitters at redshifts >3.
80 - Vithal Tilvi 2010
Lyman alpha (Lya) emission lines should be attenuated in a neutral intergalactic medium (IGM). Therefore the visibility of Lya emitters at high redshifts can serve as a valuable probe of reionization at about the 50% level. We present an imaging sear ch for z=7.7 Lya emitting galaxies using an ultra-narrowband filter (filter width= 9A) on the NEWFIRM imager at the Kitt Peak National Observatory. We found four candidate Lya emitters in a survey volume of 1.4 x 10^4 Mpc^3, with a line flux brighter than 6x10^-18 erg/cm^2/s (5 sigma in 2 aperture). We also performed a detailed Monte-Carlo simulation incorporating the instrumental effects to estimate the expected number of Lya emitters in our survey, and found that we should expect to detect one Lya emitter, assuming a non-evolving Lya luminosity function (LF) between z=6.5 and z=7.7. Even if one of the present candidates is spectroscopically confirmed as a z~8 Lya emitter, it would indicate that there is no significant evolution of the Lya LF from z=3.1 to z~8. While firm conclusions would need both spectroscopic confirmations and larger surveys to boost the number counts of galaxies, we successfully demonstrate the feasibility of sensitive near-infrared (1.06 um) narrow-band searches using custom filters designed to avoid the OH emission lines that make up most of the sky background.
93 - Vithal Tilvi 2009
We present a simple physical model for populating dark matter halos with Lyman Alpha Emiiters(LAEs) and predict the physical properties of LAEs at z~3-7. The central tenet of this model is that the Ly-alpha luminosity is proportional to the star form ation rate (SFR) which is directly related to the halo mass accretion rate. The only free parameter in our model is then the star-formation efficiency (SFE). An efficiency of 2.5% provides the best-fit to the Ly-alpha luminosity function (LF) at redshift z=3.1, and we use this SFE to construct Ly-alpha LFs at other redshifts. Our model reproduce the Ly-alpha LFs, stellar ages, SFR ~1-10; Msun/yr, stellar masses ~ 10^7-10^8 Msun and the clustering properties of LAEs at z~3-7. We find the spatial correlation lengths ro ~ 3-6 Mpc/h, in agreement with the observations. Finally, we estimate the field-to-field variation ~ 30% for current volume and flux limited surveys, again consistent with observations. Our results suggest that the star formation, and hence Ly-alpha emission in LAEs is powered by the accretion of new material, and that the physical properties of LAEs do not evolve significantly over a wide range of redshifts. Relating the accreted mass, rather than the total mass of halos, to the Ly-alpha luminosity of LAEs naturally gives rise to the duty cycle of LAEs.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا