ترغب بنشر مسار تعليمي؟ اضغط هنا

We perform in-depth dynamical modelling of the luminous and dark matter (DM) content of the elliptical galaxy NGC 1407. Our strategy consists of solving the spherical Jeans equations for three independent dynamical tracers: stars, blue GCs and red GC s in a self-consistent manner. We adopt a maximum-likelihood Markov-Chain Monte Carlo fitting technique in the attempt to constrain the inner slope of the DM density profile (the cusp/core problem), and the stellar initial mass function (IMF) of the galaxy. We find the inner logarithmic slope of the DM density profiles to be $gamma = 0.6pm0.4$, which is consistent with either a DM cusp ($gamma = 1$) or with a DM core $(gamma = 0)$. Our findings are consistent with a Salpeter IMF, and marginally consistent with a Kroupa IMF. We infer tangential orbits for the blue GCs, and radial anisotropy for red GCs and stars. The modelling results are consistent with the virial mass--concentration relation predicted by $Lambda$CDM simulations. The virial mass of NGC 1407 is $log$ $M_{rm vir} = 13.3 pm 0.2 M_{odot}$, whereas the stellar mass is $log M_* = 11.8 pm 0.1 M_{odot}$. The overall uncertainties on the mass of NGC 1407 are only 5 per cent at the projected stellar effective radius. We attribute the disagreement between our results and previous X-ray results to the gas not being in hydrostatic equilibrium in the central regions of the galaxy. The halo of NGC 1407 is found be DM dominated, with a dynamical mass-to-light ratio of $M/L=260_{-100} ^{+174} M_{odot}/L_{odot, B}$. However, this value can be larger up to a factor of 3 depending on the assumed prior on the DM scale radius.
We present new wide-field photometry and spectroscopy of the globular clusters (GCs) around NGC 4649 (M60), the third brightest galaxy in the Virgo cluster. Imaging of NGC 4649 was assembled from a recently-obtained HST/ACS mosaic, and new Subaru/Sup rime-Cam and archival CFHT/MegaCam data. About 1200 sources were followed up spectroscopically using combined observations from three multi-object spectrographs: Keck/DEIMOS, Gemini/GMOS and MMT/Hectospec. We confirm 431 unique GCs belonging to NGC 4649, a factor of 3.5 larger than previous datasets and with a factor of 3 improvement in velocity precision. We confirm significant GC colour bimodality and find that the red GCs are more centrally concentrated, while the blue GCs are more spatially extended. We infer negative GC colour gradients in the innermost 20 kpc and flat gradients out to large radii. Rotation is detected along the galaxy major axis for all tracers: blue GCs, red GCs, galaxy stars and planetary nebulae. We compare the observed properties of NGC 4649 with galaxy formation models. We find that formation via a major merger between two gas-poor galaxies, followed by satellite accretion, can consistently reproduce the observations of NGC 4649 at different radii. We find no strong evidence to support an interaction between NGC 4649 and the neighbouring spiral galaxy NGC 4647. We identify interesting GC kinematic features in our data, such as counter-rotating subgroups and bumpy kinematic profiles, which encode more clues about the formation history of NGC 4649.
We study the mass and anisotropy distribution of the giant elliptical galaxy NGC 5846 using stars, as well as the red and blue globular cluster (GC) subpopulations. We break degeneracies in the dynamical models by taking advantage of the different ph ase space distributions of the two GC subpopulations to unambiguously constrain the mass of the galaxy and the anisotropy of the GC system. Red GCs show the same spatial distribution and behaviour as the starlight, whereas blue GCs have a shallower density profile, a larger velocity dispersion and a lower kurtosis, all of which suggest a different orbital distribution. We use a dispersion-kurtosis Jeans analysis and find that the solutions of separate analyses for the two GC subpopulations overlap in the halo parameter space. The solution converges on a massive dark matter halo, consistent with expectations from $Lambda$CDM and WMAP7 cosmology in terms of virial mass ($log M_{DM} sim13.3 M_{sun}$) and concentration ($c_{vir}sim8$). This is the first such analysis that solves the dynamics of the different GC subpopulations in a self-consistent manner. Our method improves the uncertainties on the halo parameter determination by a factor of two and opens new avenues for the use of elliptical galaxy dynamics as tests of predictions from cosmological simulations. The implied stellar mass-to-light ratio derived from the dynamical modelling is fully consistent with a Salpeter initial mass function (IMF) and rules out a bottom light IMF. The different GC subpopulations show markedly distinct orbital distributions at large radii, with red GCs having an anisotropy parameter $betasim0.4$ outside $sim3R_e$, and the blue GCs having $betasim0.15$ at the same radii, while centrally ($sim1R_e$) they are both isotropic. We discuss the implications of our findings within the two-phase formation scenario for early-type galaxies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا