ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper we extend the well known theorem of Angelo Lopez concerning the Picard group of the general space projective surface containing a given smooth projective curve, to the intermediate Neron-Severi group of a general hypersurface in any smooth projective variety.
Let $ Y subseteq Bbb P^N $ be a possibly singular projective variety, defined over the field of complex numbers. Let $X$ be the intersection of $Y$ with $h$ general hypersurfaces of sufficiently large degrees. Let $d>0$ be an integer, and assume that $dim Y=n+h$ and $ dim Y_{sing} le min{ d+h-1 , n-1 } $. Let $Z$ be an algebraic cycle on $Y$ of dimension $d+h$, whose homology class in $H_{2(d+h)}(Y; Bbb Q)$ is non-zero. In the present paper we prove that the restriction of $Z$ to $X$ is not algebraically equivalent to zero. This is a generalization to the singular case of a result due to Nori in the case $Y$ is smooth. As an application we provide explicit examples of singular varieties for which homological equivalence is different from the algebraic one.
Let $Z$ be a closed subscheme of a smooth complex projective variety $Ysubseteq Ps^N$, with $dim,Y=2r+1geq 3$. We describe the intermediate Neron-Severi group (i.e. the image of the cycle map $A_r(X)to H_{2r}(X;mathbb{Z})$) of a general smooth hypers urface $Xsubset Y$ of sufficiently large degree containing $Z$.
Fix integers $r,d,s,pi$ with $rgeq 4$, $dgg s$, $r-1leq s leq 2r-4$, and $pigeq 0$. Refining classical results for the genus of a projective curve, we exhibit a sharp upper bound for the arithmetic genus $p_a(C)$ of an integral projective curve $Csub set {mathbb{P}^r}$ of degree $d$, assuming that $C$ is not contained in any surface of degree $<s$, and not contained in any surface of degree $s$ with sectional genus $> pi$. Next we discuss other types of bound for $p_a(C)$, involving conditions on the entire Hilbert polynomial of the integral surfaces on which $C$ may lie.
By the fundamental work of Griffiths one knows that, under suitable assumption, homological and algebraic equivalence do not coincide for a general hypersurface section of a smooth projective variety $Y$. In the present paper we prove the same result in case $Y$ has isolated singularities.
Let $SsubsetPs^r$ ($rgeq 5$) be a nondegenerate, irreducible, smooth, complex, projective surface of degree $d$. Let $delta_S$ be the number of double points of a general projection of $S$ to $Ps^4$. In the present paper we prove that $ delta_Sleq{bi nom {d-2} {2}}$, with equality if and only if $S$ is a rational scroll. Extensions to higher dimensions are discussed.
Let $Z$ be a closed subscheme of a smooth complex projective complete intersection variety $Ysubseteq Ps^N$, with $dim Y=2r+1geq 3$. We describe the Neron-Severi group $NS_r(X)$ of a general smooth hypersurface $Xsubset Y$ of sufficiently large degree containing $Z$.
Let $Y$ be an $(m+1)$-dimensional irreducible smooth complex projective variety embedded in a projective space. Let $Z$ be a closed subscheme of $Y$, and $delta$ be a positive integer such that $mathcal I_{Z,Y}(delta)$ is generated by global sections . Fix an integer $dgeq delta +1$, and assume the general divisor $X in |H^0(Y,ic_{Z,Y}(d))|$ is smooth. Denote by $H^m(X;mathbb Q)_{perp Z}^{text{van}}$ the quotient of $H^m(X;mathbb Q)$ by the cohomology of $Y$ and also by the cycle classes of the irreducible components of dimension $m$ of $Z$. In the present paper we prove that the monodromy representation on $H^m(X;mathbb Q)_{perp Z}^{text{van}}$ for the family of smooth divisors $X in |H^0(Y,ic_{Z,Y}(d))|$ is irreducible.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا