ترغب بنشر مسار تعليمي؟ اضغط هنا

Three paradigms commonly used in classical, pre-quantum physics to describe particles (that is: the material point, the test-particle and the diluted particle (droplet model)) can be identified as limit-cases of a quantum regime in which pairs of par ticles interact without getting entangled with each other. This entanglement-free regime also provides a simplified model of what is called in the decoherence approach islands of classicality, that is, preferred bases that would be selected through evolution by a Darwinist mechanism that aims at optimising information. We show how, under very general conditions, coherent states are natural candidates for classical pointer states. This occurs essentially because, when a (supposedly bosonic) system coherently exchanges only one quantum at a time with the (supposedly bosonic) environment, coherent states of the system do not get entangled with the environment, due to the bosonic symmetry.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا