ترغب بنشر مسار تعليمي؟ اضغط هنا

Inferring representations of 3D scenes from 2D observations is a fundamental problem of computer graphics, computer vision, and artificial intelligence. Emerging 3D-structured neural scene representations are a promising approach to 3D scene understa nding. In this work, we propose a novel neural scene representation, Light Field Networks or LFNs, which represent both geometry and appearance of the underlying 3D scene in a 360-degree, four-dimensional light field parameterized via a neural implicit representation. Rendering a ray from an LFN requires only a *single* network evaluation, as opposed to hundreds of evaluations per ray for ray-marching or volumetric based renderers in 3D-structured neural scene representations. In the setting of simple scenes, we leverage meta-learning to learn a prior over LFNs that enables multi-view consistent light field reconstruction from as little as a single image observation. This results in dramatic reductions in time and memory complexity, and enables real-time rendering. The cost of storing a 360-degree light field via an LFN is two orders of magnitude lower than conventional methods such as the Lumigraph. Utilizing the analytical differentiability of neural implicit representations and a novel parameterization of light space, we further demonstrate the extraction of sparse depth maps from LFNs.
Neural implicit shape representations are an emerging paradigm that offers many potential benefits over conventional discrete representations, including memory efficiency at a high spatial resolution. Generalizing across shapes with such neural impli cit representations amounts to learning priors over the respective function space and enables geometry reconstruction from partial or noisy observations. Existing generalization methods rely on conditioning a neural network on a low-dimensional latent code that is either regressed by an encoder or jointly optimized in the auto-decoder framework. Here, we formalize learning of a shape space as a meta-learning problem and leverage gradient-based meta-learning algorithms to solve this task. We demonstrate that this approach performs on par with auto-decoder based approaches while being an order of magnitude faster at test-time inference. We further demonstrate that the proposed gradient-based method outperforms encoder-decoder based methods that leverage pooling-based set encoders.
Implicitly defined, continuous, differentiable signal representations parameterized by neural networks have emerged as a powerful paradigm, offering many possible benefits over conventional representations. However, current network architectures for such implicit neural representations are incapable of modeling signals with fine detail, and fail to represent a signals spatial and temporal derivatives, despite the fact that these are essential to many physical signals defined implicitly as the solution to partial differential equations. We propose to leverage periodic activation functions for implicit neural representations and demonstrate that these networks, dubbed sinusoidal representation networks or Sirens, are ideally suited for representing complex natural signals and their derivatives. We analyze Siren activation statistics to propose a principled initialization scheme and demonstrate the representation of images, wavefields, video, sound, and their derivatives. Further, we show how Sirens can be leveraged to solve challenging boundary value problems, such as particular Eikonal equations (yielding signed distance functions), the Poisson equation, and the Helmholtz and wave equations. Lastly, we combine Sirens with hypernetworks to learn priors over the space of Siren functions.
The recent success of implicit neural scene representations has presented a viable new method for how we capture and store 3D scenes. Unlike conventional 3D representations, such as point clouds, which explicitly store scene properties in discrete, l ocalized units, these implicit representations encode a scene in the weights of a neural network which can be queried at any coordinate to produce these same scene properties. Thus far, implicit representations have primarily been optimized to estimate only the appearance and/or 3D geometry information in a scene. We take the next step and demonstrate that an existing implicit representation (SRNs) is actually multi-modal; it can be further leveraged to perform per-point semantic segmentation while retaining its ability to represent appearance and geometry. To achieve this multi-modal behavior, we utilize a semi-supervised learning strategy atop the existing pre-trained scene representation. Our method is simple, general, and only requires a few tens of labeled 2D segmentation masks in order to achieve dense 3D semantic segmentation. We explore two novel applications for this semantically aware implicit neural scene representation: 3D novel view and semantic label synthesis given only a single input RGB image or 2D label mask, as well as 3D interpolation of appearance and semantics.
Unsupervised learning with generative models has the potential of discovering rich representations of 3D scenes. While geometric deep learning has explored 3D-structure-aware representations of scene geometry, these models typically require explicit 3D supervision. Emerging neural scene representations can be trained only with posed 2D images, but existing methods ignore the three-dimensional structure of scenes. We propose Scene Representation Networks (SRNs), a continuous, 3D-structure-aware scene representation that encodes both geometry and appearance. SRNs represent scenes as continuous functions that map world coordinates to a feature representation of local scene properties. By formulating the image formation as a differentiable ray-marching algorithm, SRNs can be trained end-to-end from only 2D images and their camera poses, without access to depth or shape. This formulation naturally generalizes across scenes, learning powerful geometry and appearance priors in the process. We demonstrate the potential of SRNs by evaluating them for novel view synthesis, few-shot reconstruction, joint shape and appearance interpolation, and unsupervised discovery of a non-rigid face model.
In this work, we address the lack of 3D understanding of generative neural networks by introducing a persistent 3D feature embedding for view synthesis. To this end, we propose DeepVoxels, a learned representation that encodes the view-dependent appe arance of a 3D scene without having to explicitly model its geometry. At its core, our approach is based on a Cartesian 3D grid of persistent embedded features that learn to make use of the underlying 3D scene structure. Our approach combines insights from 3D geometric computer vision with recent advances in learning image-to-image mappings based on adversarial loss functions. DeepVoxels is supervised, without requiring a 3D reconstruction of the scene, using a 2D re-rendering loss and enforces perspective and multi-view geometry in a principled manner. We apply our persistent 3D scene representation to the problem of novel view synthesis demonstrating high-quality results for a variety of challenging scenes.
Traditional cinematography has relied for over a century on a well-established set of editing rules, called continuity editing, to create a sense of situational continuity. Despite massive changes in visual content across cuts, viewers in general exp erience no trouble perceiving the discontinuous flow of information as a coherent set of events. However, Virtual Reality (VR) movies are intrinsically different from traditional movies in that the viewer controls the camera orientation at all times. As a consequence, common editing techniques that rely on camera orientations, zooms, etc., cannot be used. In this paper we investigate key relevant questions to understand how well traditional movie editing carries over to VR. To do so, we rely on recent cognition studies and the event segmentation theory, which states that our brains segment continuous actions into a series of discrete, meaningful events. We first replicate one of these studies to assess whether the predictions of such theory can be applied to VR. We next gather gaze data from viewers watching VR videos containing different edits with varying parameters, and provide the first systematic analysis of viewers behavior and the perception of continuity in VR. From this analysis we make a series of relevant findings; for instance, our data suggests that predictions from the cognitive event segmentation theory are useful guides for VR editing; that different types of edits are equally well understood in terms of continuity; and that spatial misalignments between regions of interest at the edit boundaries favor a more exploratory behavior even after viewers have fixated on a new region of interest. In addition, we propose a number of metrics to describe viewers attentional behavior in VR. We believe the insights derived from our work can be useful as guidelines for VR content creation.
A broad class of problems at the core of computational imaging, sensing, and low-level computer vision reduces to the inverse problem of extracting latent images that follow a prior distribution, from measurements taken under a known physical image f ormation model. Traditionally, hand-crafted priors along with iterative optimization methods have been used to solve such problems. In this paper we present unrolled optimization with deep priors, a principled framework for infusing knowledge of the image formation into deep networks that solve inverse problems in imaging, inspired by classical iterative methods. We show that instances of the framework outperform the state-of-the-art by a substantial margin for a wide variety of imaging problems, such as denoising, deblurring, and compressed sensing magnetic resonance imaging (MRI). Moreover, we conduct experiments that explain how the framework is best used and why it outperforms previous methods.
Real-world imaging systems acquire measurements that are degraded by noise, optical aberrations, and other imperfections that make image processing for human viewing and higher-level perception tasks challenging. Conventional cameras address this pro blem by compartmentalizing imaging from high-level task processing. As such, conventional imaging involves processing the RAW sensor measurements in a sequential pipeline of steps, such as demosaicking, denoising, deblurring, tone-mapping and compression. This pipeline is optimized to obtain a visually pleasing image. High-level processing, on the other hand, involves steps such as feature extraction, classification, tracking, and fusion. While this siloed design approach allows for efficient development, it also dictates compartmentalized performance metrics, without knowledge of the higher-level task of the camera system. For example, todays demosaicking and denoising algorithms are designed using perceptual image quality metrics but not with domain-specific tasks such as object detection in mind. We propose an end-to-end differentiable architecture that jointly performs demosaicking, denoising, deblurring, tone-mapping, and classification. The architecture learns processing pipelines whose outputs differ from those of existing ISPs optimized for perceptual quality, preserving fine detail at the cost of increased noise and artifacts. We demonstrate on captured and simulated data that our model substantially improves perception in low light and other challenging conditions, which is imperative for real-world applications. Finally, we found that the proposed model also achieves state-of-the-art accuracy when optimized for image reconstruction in low-light conditions, validating the architecture itself as a potentially useful drop-in network for reconstruction and analysis tasks beyond the applications demonstrated in this work.
Understanding how people explore immersive virtual environments is crucial for many applications, such as designing virtual reality (VR) content, developing new compression algorithms, or learning computational models of saliency or visual attention. Whereas a body of recent work has focused on modeling saliency in desktop viewing conditions, VR is very different from these conditions in that viewing behavior is governed by stereoscopic vision and by the complex interaction of head orientation, gaze, and other kinematic constraints. To further our understanding of viewing behavior and saliency in VR, we capture and analyze gaze and head orientation data of 169 users exploring stereoscopic, static omni-directional panoramas, for a total of 1980 head and gaze trajectories for three different viewing conditions. We provide a thorough analysis of our data, which leads to several important insights, such as the existence of a particular fixation bias, which we then use to adapt existing saliency predictors to immersive VR conditions. In addition, we explore other applications of our data and analysis, including automatic alignment of VR video cuts, panorama thumbnails, panorama video synopsis, and saliency-based compression.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا