ترغب بنشر مسار تعليمي؟ اضغط هنا

In passive linear systems, complete combining of powers carried by waves from several input channels into a single output channel is forbidden by the energy conservation law. Here, we demonstrate that complete combination of both coherent and incoher ent plane waves can be achieved using metasurfaces with properties varying in space and time. The proposed structure reflects waves of the same frequency but incident at different angles towards a single direction. The frequencies of the output waves are shifted by the metasurface, ensuring perfect incoherent power combining. The proposed concept of power combining is general and can be applied for electromagnetic waves from the microwave to optical domains, as well as for waves of other physical nature.
We investigate beam scanning by lateral feed displacement in novel metasurface based reflector antennas with extremely short focal distances. Electric field distributions of the waves reflected from the antenna are studied numerically and experimenta lly for defocusing angles up to 24 degree. The results show that despite their sub-wavelength focal distances, the scanning ability of metamirrors is similar to that of short-focus reflectarrays (focal distance about several wavelengths). In addition to offering a possibility to realize extremely small focal distances, metamirror antennas are practically penetrable and invisible for any radiation outside of the operating frequency range.
In this paper, we present a method to retrieve tensor polarizabilities of general bi-anisotropic particles from their far-field responses to plane-wave illuminations. The necessary number of probing excitations and the directions where the scattered fields need to be calculated or measured have been found. When implemented numerically, the method does not require any spherical harmonic expansion nor direct calculation of dipole moments, but only calculations of co- and cross-polarized scattering cross sections for a number of plane-wave excitations. With this simple approach, the polarizabilities can be found also from experimentally measured cross sections. The method is exemplified considering two bi-anisotropic particles, a reciprocal omega particle and a non-reciprocal particle containing a ferrite inclusion coupled to metal strips.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا