ترغب بنشر مسار تعليمي؟ اضغط هنا

Discrete-time Rayleigh fading single-input single-output (SISO) and multiple-input multiple-output (MIMO) channels are considered, with no channel state information at the transmitter or the receiver. The fading is assumed to be stationary and correl ated in time, but independent from antenna to antenna. Peak-power and average-power constraints are imposed on the transmit antennas. For MIMO channels, these constraints are either imposed on the sum over antennas, or on each individual antenna. For SISO channels and MIMO channels with sum power constraints, the asymptotic capacity as the peak signal-to-noise ratio tends to zero is identified; for MIMO channels with individual power constraints, this asymptotic capacity is obtained for a class of channels called transmit separable channels. The results for MIMO channels with individual power constraints are carried over to SISO channels with delay spread (i.e. frequency selective fading).
Discrete-time Rayleigh fading multiple-input multiple-output (MIMO) channels are considered, with no channel state information at the transmitter and receiver. The fading is assumed to be correlated in time and independent from antenna to antenna. Pe ak and average transmit power constraints are imposed, either on the sum over antennas, or on each individual antenna. In both cases, an upper bound and an asymptotic lower bound, as the signal-to-noise ratio approaches zero, on the channel capacity are presented. The limit of normalized capacity is identified under the sum power constraints, and, for a subclass of channels, for individual power constraints. These results carry over to a SISO channel with delay spread (i.e. frequency selective fading).
Flat-fading channels that are correlated in time are considered under peak and average power constraints. For discrete-time channels, a new upper bound on the capacity per unit time is derived. A low SNR analysis of a full-scattering vector channel i s used to derive a complimentary lower bound. Together, these bounds allow us to identify the exact scaling of channel capacity for a fixed peak to average ratio, as the average power converges to zero. The upper bound is also asymptotically tight as the average power converges to zero for a fixed peak power. For a continuous time infinite bandwidth channel, Viterbi identified the capacity for M-FSK modulation. Recently, Zhang and Laneman showed that the capacity can be achieved with non-bursty signaling (QPSK). An additional contribution of this paper is to obtain similar results under peak and average power constraints.
Caire, Taricco and Biglieri presented a detailed analysis of bit interleaved coded modulation, a simple and popular technique used to improve system performance, especially in the context of fading channels. They derived an upper bound to the probabi lity of error, called the expurgated bound. In this correspondence, the proof of the expurgated bound is shown to be flawed. A new upper bound is also derived. It is not known whether the original expurgated bound is valid for the important special case of square QAM with Gray labeling, but the new bound is very close to, and slightly tighter than, the original bound for a numerical example.
A discrete-time single-user scalar channel with temporally correlated Rayleigh fading is analyzed. There is no side information at the transmitter or the receiver. A simple expression is given for the capacity per unit energy, in the presence of a pe ak constraint. The simple formula of Verdu for capacity per unit cost is adapted to a channel with memory, and is used in the proof. In addition to bounding the capacity of a channel with correlated fading, the result gives some insight into the relationship between the correlation in the fading process and the channel capacity. The results are extended to a channel with side information, showing that the capacity per unit energy is one nat per Joule, independently of the peak power constraint. A continuous-time version of the model is also considered. The capacity per unit energy subject to a peak constraint (but no bandwidth constraint) is given by an expression similar to that for discrete time, and is evaluated for Gauss-Markov and Clarke fading channels.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا