ترغب بنشر مسار تعليمي؟ اضغط هنا

153 - S. Recchi IfA , Vienna 2014
Standard analytical chemical evolution modelling of galaxies has been assuming the stellar initial mass function (IMF) to be invariant and fully sampled allowing fractions of massive stars to contribute even in dwarf galaxies with very low star forma tion rates (SFRs). Recent observations show the integrated galactic initial mass function (IGIMF) of stars, i.e. the galaxy-wide IMF, to become systematically top-heavy with increasing SFR. This has been predicted by the IGIMF theory, which is here used to develop the analytical theory of the chemical evolution of galaxies. This theory is non-linear and requires the iterative solution of implicit integral equations due to the dependence of the IGIMF on the metallicity and on the SFR. It is shown that the mass-metallicity relation of galaxies emerges naturally, although at low masses the theoretical predictions overestimate the observations by 0.3--0.4 dex. A good agreement with the observation can be obtained only if gas flows are taken into account. In particular, we are able to reproduce the mass--metallicity relation observed by Lee et al. (2006) with modest amounts of infall and with an outflow rate which decreases as a function of the galactic mass. The outflow rates required to fit the data are considerably smaller than required in models with invariant IMFs.
107 - C. Maier 2014
(Abridged) The knowledge of the number and of the physical nature of low-metallicity massive galaxies is crucial for the determination and interpretation of the mass-metallicity relation (MZR). Using VLT-ISAAC near-infrared (NIR) spectroscopy of 39 z COSMOS z~0.7 galaxies, we have measured Halpha and [NII] emission line fluxes for galaxies with [OII], Hbeta and [OIII] available from VIMOS optical spectroscopy. The NIR spectroscopy enables us to break the degeneracy of the R23 method to derive unambiguously O/H gas metallicities, and also SFRs from extinction corrected Halpha. Using, as a benchmark, the position in the D4000 vs. [OIII]/Hbeta diagram of galaxies with reliable O/Hs from NIR spectroscopy, we were able to break the lower/upper branch R23 degeneracy of additional 900 zCOSMOS z~0.7 galaxies. Additionally, the Halpha-based SFR measurements were used to find the best SFR calibration based on [OII] for the zCOSMOS z~0.7 galaxies without Halpha measurements. We find a fraction of 19% of lower mass 9.5<logM/Msun<10.3 zCOSMOS galaxies which shows a larger evolution of the MZR relation, compared to higher mass galaxies, being more metal poor at a given mass by a factor of 2-3 compared to SDSS. This indicates that the low-mass MZR slope is getting steeper at z~0.7 compared to local galaxies. The existence of these metal-poor galaxies at z~0.7 can be interpreted as the chemical version of galaxy downsizing. Moreover, the sample of zCOSMOS galaxies shows direct evidence that SFR influences the MZR at these redshifts. The comparison of the measured metallicities for the zCOSMOS sample with the values expected for a non-evolving fundamental metallicity relation (FMR) shows broadly agreement, and reveals that also galaxies with lower metallicities and typically higher (specific) SFRs, as found in our zCOSMOS sample at z~0.7, are in agreement with the predictions of a non-evolving Z(M,SFR).
107 - Bodo Ziegler Vienna 2014
We investigate the evolution of the Tully-Fisher relation out to z=1 with 137 emission-line galaxies in the field that display a regular rotation curve. They follow a linear trend with lookback time being on average brighter by 1.1Bmag and 60% smalle r at z=1. For a subsample of 48 objects with very regular gas kinematics and stellar structure we derive a TF scatter of 1.15mag, which is two times larger than local samples exhibit. This is probably due to modest variations in their star formation history and chemical enrichment. In another study of 96 members of Abell 901/902 at z=0.17 and 86 field galaxies with similar redshifts we find a difference in the TFR of 0.42mag in the B-band but no significant difference in stellar mass. Comparing specifically red spirals with blue ones in the cluster, the former are fainter on average by 0.35Bmag and have 15% lower stellar masses. This is probably due to star formation quenching caused by ram-pressure in the cluster environment. Evidence for this scenario comes from strong distortions of the gas disk of red spirals that have at the same time a very regular stellar disk structure.
140 - C. Maier 2014
A relation between the stellar mass M and the gas-phase metallicity Z of galaxies, the MZR, is observed up to higher redshifts. It is a matter of debate, however, if the SFR is a second parameter in the MZR. To explore this issue at z > 1, we used VL T-SINFONI near-infrared (NIR) spectroscopy of eight zCOSMOS galaxies at 1.3 < z < 1.4 to measure the strengths of four emission lines: Hbeta, [OIII]lambda5007, Halpha, and [NII]lambda6584, additional to [OII]lambda3727 measured from VIMOS. We derive reliable O/H metallicities based on five lines, and also SFRs from extinction corrected Halpha measurements. We find that the MZR of these star-forming galaxies at z~1.4 is lower than the local SDSS MZR by a factor of three to five, a larger change than reported in the literature using [NII]/Halpha-based metallicities from individual and stacked spectra. Correcting N2-based O/Hs using recent results by Newman et al. (2014), also the larger FMOS sample at z~1.4 of Zahid et al. (2014) shows a similar evolution of the MZR like the zCOSMOS objects. These observations seem also in agreement with a non-evolving FMR using the physically motivated formulation of the FMR from Lilly et al. (2013).
In the local universe, there is good evidence that, at a given stellar mass M, the gas-phase metallicity Z is anti-correlated with the star formation rate (SFR) of the galaxies. It has also been claimed that the resulting Z(M,SFR) relation is invaria nt with redshift - the so-called Fundamental Metallicity Relation (FMR). Given a number of difficulties in determining metallicities, especially at higher redshifts, the form of the Z(M,SFR) relation and whether it is really independent of redshift is still very controversial. To explore this issue at z>2, we used VLT-SINFONI and Subaru-MOIRCS near-infrared spectroscopy of 20 zCOSMOS-deep galaxies at 2.1<z<2.5 to measure the strengths of up to five emission lines: [OII], Hbeta, [OIII], Halpha, and [NII]. This near-infrared spectroscopy enables us to derive O/H metallicities, and also SFRs from extinction corrected Halpha measurements. We find that the mass-metallicity relation (MZR) of these star-forming galaxies at z~2.3 is lower than the local SDSS MZR by a factor of three to five, a larger change than found by Erb et al. (2006) using [NII]/Halpha-based metallicities from stacked spectra. We discuss how the different selections of the samples and metallicity calibrations used may be responsible for this discrepancy. The galaxies show direct evidence that the SFR is still a second parameter in the mass-metallicity relation at these redshifts. However, determining whether the Z(M,SFR) relation is invariant with epoch depends on the choice of extrapolation used from local samples, because z>2 galaxies of a given mass have much higher SFRs than the local SDSS galaxies. We find that the zCOSMOS galaxies are consistent with a non-evolving FMR if we use the physically-motivated formulation of the Z(M,SFR) relation from Lilly et al. (2003), but not if we use the empirical formulation of Mannucci et al. (2010).
84 - S. Recchi 2013
In this review I give a summary of the state-of-the-art for what concerns the chemo-dynamical numerical modelling of galaxies in general and of dwarf galaxies in particular. In particular, I focus my attention on (i) initial conditions; (ii) the equa tions to solve; (iii) the star formation process in galaxies; (iv) the initial mass function; (v) the chemical feedback; (vi) the mechanical feedback; (vii) the environmental effects. Moreover, some key results concerning the development of galactic winds in galaxies and the fate of heavy elements, freshly synthesised after an episode of star formation, have been reported. At the end of this review, I summarise the topics and physical processes, relevant for the evolution of galaxies, that in my opinion are not properly treated in modern computer simulations of galaxies and that deserve more attention in the future.
41 - S. Recchi 2013
The aim of this paper is to quantify the amplitude of the predicted plateau in [alpha/Fe] ratios associated with the most metal-poor stars of a galaxy. We assume that the initial mass function in galaxies is steeper if the star formation rate (SFR) i s low -- as per the integrated galactic initial mass function (IGIMF) theory. A variant of the theory, in which the IGIMF depends upon the metallicity of the parent galaxy, is also considered. The IGIMF theory predicts low [alpha/Fe] plateaus in dwarf galaxies, characterised by small SFRs. The [alpha/Fe] plateau is up to 0.7dex lower than the corresponding plateau of the Milky Way. For a universal IMF one should expect instead that the [alpha/Fe] plateau is the same for all the galaxies, irrespective of their masses or SFRs. Assuming a strong dependence of the IMF on the metallicity of the parent galaxy, dwarf galaxies can show values of the [alpha/Fe] plateau similar to those of the Milky Way, and almost independent on the SFR. The [Mg/Fe] ratios of the most metal-poor stars in dwarf galaxies satellites of the Milky Way can be reproduced either if we consider metallicity-dependent IMFs or if the early SFRs of these galaxies were larger than we presently think. Present and future observations of dwarf galaxies can help disentangle between these different IGIMF formulations.
In this paper we extend and prove in detail the Finite Rank Theorem for connection matrices of graph parameters definable in Monadic Second Order Logic with counting (CMSOL) from B. Godlin, T. Kotek and J.A. Makowsky (2008) and J.A. Makowsky (2009). We demonstrate its vast applicability in simplifying known and new non-definability results of graph properties and finding new non-definability results for graph parameters. We also prove a Feferman-Vaught Theorem for the logic CFOL, First Order Logic with the modular counting quantifiers.
Aims: We report the discovery that Mira variables with and without absorption lines of the element technetium (Tc) occupy two different regions in a diagram of near- to mid-infrared colour versus pulsation period. Tc is an indicator of a recent or on going mixing event called the third dredge-up (3DUP), and the near- to mid-IR colour, such as the (K-[22]) colour where [22] is the the 22 micron band of the WISE space observatory, is an indicator of the dust mass-loss rate of a star. Methods: We collected data from the literature about the Tc content, pulsation period, and near- and mid-infrared magnitudes of more than 190 variable stars on the asymptotic giant branch (AGB) to which Miras belong. The sample is naturally biased towards optical AGB stars, which have low to intermediate (dust) mass-loss rates. Results: We show that a clear relation between dust mass-loss rate and pulsation period exists if a distinction is made between Tc-poor and Tc-rich Miras. Surprisingly, at a given period, Tc-poor Miras are redder in (K-[22]) than are Tc-rich Miras; i.e. they have higher mass-loss rates than the Tc-rich Miras. A few stars deviate from this trend; physical explanations are given for these exceptions, such as binarity or high mass. Conclusions: We put forward two hypotheses to explain this dichotomy and conclude that the two sequences formed by Tc-poor and Tc-rich Miras are probably due to the different masses of the two groups. The pulsation period has a strong correlation with the dust-mass loss rate, indicating that the pulsations are indeed triggering a dust-driven wind. The location in the (K-[22]) vs. period diagram can be used to distinguish between pre- and post-3DUP Miras, which we apply to a sample of Galactic bulge AGB stars. We find that 3DUP is probably not common in AGB stars in the inner bulge.
Context: We studied numerically the formation of giant planet (GP) and brown dwarf (BD) embryos in gravitationally unstable protostellar disks and compared our findings with directly-imaged, wide-orbit (>= 50 AU) companions known to-date. The viabili ty of the disk fragmentation scenario for the formation of wide-orbit companions in protostellar disks around (sub-)solar mass stars was investigated. Methods: We used numerical hydrodynamics simulations of disk formation and evolution with an accurate treatment of disk thermodynamics. The use of the thin-disk limit allowed us to probe the long-term evolution of protostellar disks. We focused on models that produced wide-orbit GP/BD embryos, which opened a gap in the disk and showed radial migration timescales similar to or longer than the typical disk lifetime. Results: While disk fragmentation was seen in the majority of our models, only 6 models out of 60 revealed the formation of quasi-stable, wide-orbit GP/BD embryos. Disk fragmentation produced GP/BD embryos with masses in the 3.5-43 M_J range, covering the whole mass spectrum of directly-imaged, wide-orbit companions to (sub-)solar mass stars. On the other hand, our modelling failed to produce embryos on orbital distances <= 170 AU, whereas several directly-imaged companions were found at smaller orbits down to a few AU. Disk fragmentation also failed to produce wide-orbit companions around stars with mass <= 0.7 Msun, in disagreement with observations. Conclusions: Disk fragmentation is unlikely to explain the whole observed spectrum of wide-orbit companions to (sub-)solar-mass stars and other formation mechanisms, e.g., dynamical scattering of closely-packed companions onto wide orbits, should be invoked to account for companions at orbital distance from a few tens to approx 150 AU and wide-orbit companions with masses of the host star <= 0.7 Msun. (abridged)
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا