ترغب بنشر مسار تعليمي؟ اضغط هنا

A benchmark study of modern distributed databases is an important source of information to select the right technology for managing data in the cloud-edge paradigms. To make the right decision, it is required to conduct an extensive experimental stud y on a variety of hardware infrastructures. While most of the state-of-the-art studies have investigated only response time and scalability of distributed databases, focusing on other various metrics (e.g., energy, bandwidth, and storage consumption) is essential to fully understand the resources consumption of the distributed databases. Also, existing studies have explored the response time and scalability of these databases either in private or public cloud. Hence, there is a paucity of investigation into the evaluation of these databases deployed in a hybrid cloud, which is the seamless integration of public and private cloud. To address these research gaps, in this paper, we investigate energy, bandwidth and storage consumption of the most used and common distributed databases. For this purpose, we have evaluated four open-source databases (Cassandra, Mongo, Redis and MySQL) on the hybrid cloud spanning over local OpenStack and Microsoft Azure, and a variety of edge computing nodes including Raspberry Pi, a cluster of Raspberry Pi, and low and high power servers. Our extensive experimental results reveal several helpful insights for the deployment selection of modern distributed databases in edge-cloud environments.
A Hybrid cloud is an integration of resources between private and public clouds. It enables users to horizontally scale their on-premises infrastructure up to public clouds in order to improve performance and cut up-front investment cost. This model of applications deployment is called cloud bursting that allows data-intensive applications especially distributed database systems to have the benefit of both private and public clouds. In this work, we present an automated implementation of a hybrid cloud using (i) a robust and zero-cost Linux-based VPN to make a secure connection between private and public clouds, and (ii) Terraform as a software tool to deploy infrastructure resources based on the requirements of hybrid cloud. We also explore performance evaluation of cloud bursting for six modern and distributed database systems on the hybrid cloud spanning over local OpenStack and Microsoft Azure. Our results reveal that MongoDB and MySQL Cluster work efficient in terms of throughput and operations latency if they burst into a public cloud to supply their resources. In contrast, the performance of Cassandra, Riak, Redis, and Couchdb reduces if they significantly leverage their required resources via cloud bursting.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا