ترغب بنشر مسار تعليمي؟ اضغط هنا

The high abundances of Complex Organic Molecules (COMs) with respect to methanol, the most abundant COM, detected towards low-mass protostars, tend to be underpredicted by astrochemical models. This discrepancy might come from the large beam of the s ingle-dish telescopes, encompassing several components of the studied protostar, commonly used to detect COMs. To address this issue, we have carried out multi-line observations of methanol and several COMs towards the two low-mass protostars NGC1333-IRAS2A and -IRAS4A with the Plateau de Bure interferometer at an angular resolution of 2 arcsec, resulting in the first multi-line detection of the O-bearing species glycolaldehyde and ethanol and of the N-bearing species ethyl cyanide towards low-mass protostars other than IRAS 16293. The high number of detected transitions from COMs (more than 40 methanol transitions for instance) allowed us to accurately derive the source size of their emission and the COMs column densities. The COMs abundances with respect to methanol derived towards IRAS2A and IRAS4A are slightly, but not substantitally, lower than those derived from previous single-dish observations. The COMs abundance ratios do not vary significantly with the protostellar luminosity, over five orders of magnitude, implying that low-mass hot corinos are quite chemically rich as high-mass hot cores. Astrochemical models still underpredict the abundances of key COMs, such as methyl formate or di-methyl ether, suggesting that our understanding of their formation remains incomplete.
While astrochemical models are successful in reproducing many of the observed interstellar species, they have been struggling to explain the observed abundances of complex organic molecules. Current models tend to privilege grain surface over gas pha se chemistry in their formation. One key assumption of those models is that radicals trapped in the grain mantles gain mobility and react on lukewarm (>30 K) dust grains. Thus, the recent detections of methyl formate (MF) and dimethyl ether (DME) in cold objects represent a challenge and may clarify the respective role of grain surface and gas phase chemistry. We propose here a new model to form DME and MF with gas phase reactions in cold environments, where DME is the precursor of MF via an efficient reaction overlooked by previous models. Furthermore, methoxy, a precursor of DME, is also synthetized in the gas phase from methanol, which is desorbed by a non-thermal process from the ices. Our new model reproduces fairy well the observations towards L1544. It also explains, in a natural way, the observed correlation between DME and MF. We conclude that gas phase reactions are major actors in the formation of MF, DME and methoxy in cold gas. This challenges the exclusive role of grain-surface chemistry and favours a combined grain-gas chemistry.
Extremely large deuteration of several molecules has been observed towards prestellar cores and low-mass protostars for a decade. New observations performed towards low-mass protostars suggest that water presents a lower deuteration in the warm inner gas than in the cold external envelope. We coupled a gas-grain astrochemical model with a one-dimension model of collapsing core to properly follow the formation and the deuteration of interstellar ices as well as their subsequent evaporation in the low-mass protostellar envelopes with the aim of interpreting the spatial and temporal evolutions of their deuteration. The astrochemical model follows the formation and the evaporation of ices with a multilayer approach and also includes a state-of-the-art deuterated chemical network by taking the spin states of H$_2$ and light ions into account. Because of their slow formation, interstellar ices are chemically heterogeneous and show an increase of their deuterium fractionation towards the surface. The differentiation of the deuteration in ices induces an evolution of the deuteration within protostellar envelopes. The warm inner region is poorly deuterated because it includes the whole molecular content of ices while the deuteration predicted in the cold external envelope scales with the highly deuterated surface of ices. We are able to reproduce the observed evolution of water deuteration within protostellar envelopes but we are still unable to predict the super-high deuteration observed for formaldehyde and methanol. Finally, the extension of this study to the deuteration of complex organics (COMs), important for the prebiotic chemistry, shows a good agreement with the observations, suggesting that we can use the deuteration to retrace their mechanisms and their moments of formation.
The [HDO]/[H2O] ratio is a crucial parameter for probing the history of water formation. So far, it has been measured for only three solar type protostars and yielded different results, possibly pointing to a substantially different history in their formation. In the present work, we report new interferometric observations of the HDO 4 2,2 - 4 2,3 line for two solar type protostars, IRAS2A and IRAS4A, located in the NGC1333 region. In both sources, the detected HDO emission originates from a central compact unresolved region. Comparison with previously published interferometric observations of the H218$O 3 1,3 - 2 2,0 line shows that the HDO and H$_2$O lines mostly come from the same region. A non-LTE LVG analysis of the HDO and H218$O line emissions, combined with published observations, provides a [HDO]/[H2O] ratio of 0.3 - 8 % in IRAS2A and 0.5 - 3 % in IRAS4A. First, the water fractionation is lower than that of other molecules such as formaldehyde and methanol in the same sources. Second, it is similar to that measured in the solar type protostar prototype, IRAS16293-2422, and, surprisingly enough, larger than that measured in NGC1333 IRAS4B. {The comparison of the measured values towards IRAS2A and IRAS4A with the predictions of our gas-grain model GRAINOBLE gives similar conclusions to those for IRAS 16293, arguing that these protostars {share} a similar chemical history, although they are located in different clouds.
Context. Millimetric observations have measured high degrees of molecular deuteration in several species seen around low-mass protostars. The Herschel Space Telescope, launched in 2009, is now providing new measures of the deuterium fractionation of water, the main constituent of interstellar ices. Aims. We aim at theoretically studying the formation and the deuteration of water, which is believed to be formed on interstellar grain surfaces in molecular clouds. Methods. We used our gas-grain astrochemical model GRAINOBLE, which considers the multilayer formation of interstellar ices. We varied several input parameters to study their impact on water deuteration. We included the treatment of ortho- and para-states of key species, including H2, which affects the deuterium fractionation of all molecules. The model also includes relevant laboratory and theoretical works on the water formation and deuteration on grain surfaces. In particular, we computed the transmission probabilities of surface reactions using the Eckart model, and we considered ice photodissociation following molecular dynamics simulations. Results. The use of a multilayer approach allowed us to study the influence of various parameters on the abundance and the deuteration of water. Deuteration of water is found to be very sensitive to the ortho-to-para ratio of H2 and to the total density, but it also depends on the gas/grain temperatures and the visual extinction of the cloud. Since the deuteration is very sensitive to the physical conditions, the comparison with sub-millimetric observation towards the low-mass protostar IRAS 16293 allows us to suggest that water ice is formed together with CO2 in molecular clouds with limited density, whilst formaldehyde and methanol are mainly formed in a later phase, where the condensation becomes denser and colder.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا