ترغب بنشر مسار تعليمي؟ اضغط هنا

Compressive lensless imagers enable novel applications in an extremely compact device, requiring only a phase or amplitude mask placed close to the sensor. They have been demonstrated for 2D and 3D microscopy, single-shot video, and single-shot hyper spectral imaging; in each of these cases, a compressive-sensing-based inverse problem is solved in order to recover a 3D data-cube from a 2D measurement. Typically, this is accomplished using convex optimization and hand-picked priors. Alternatively, deep learning-based reconstruction methods offer the promise of better priors, but require many thousands of ground truth training pairs, which can be difficult or impossible to acquire. In this work, we propose the use of untrained networks for compressive image recovery. Our approach does not require any labeled training data, but instead uses the measurement itself to update the network weights. We demonstrate our untrained approach on lensless compressive 2D imaging as well as single-shot high-speed video recovery using the cameras rolling shutter, and single-shot hyperspectral imaging. We provide simulation and experimental verification, showing that our method results in improved image quality over existing methods.
In this work, we use a span-based approach for Vietnamese constituency parsing. Our method follows the self-attention encoder architecture and a chart decoder using a CKY-style inference algorithm. We present analyses of the experiment results of the comparison of our empirical method using pre-training models XLM-Roberta and PhoBERT on both Vietnamese datasets VietTreebank and NIIVTB1. The results show that our model with XLM-Roberta archived the significantly F1-score better than other pre-training models, VietTreebank at 81.19% and NIIVTB1 at 85.70%.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا