ترغب بنشر مسار تعليمي؟ اضغط هنا

235 - Yael Naze 2014
Magnetically confined winds of early-type stars are expected to be sources of bright and hard X-rays. To clarify the systematics of the observed X-ray properties, we have analyzed a large series of Chandra and XMM observations, corresponding to all a vailable exposures of known massive magnetic stars (over 100 exposures covering ~60% of stars compiled in the catalog of Petit et al. 2013). We show that the X-ray luminosity is strongly correlated with the stellar wind mass-loss-rate, with a power-law form that is slightly steeper than linear for the majority of the less luminous, lower-Mdot B stars and flattens for the more luminous, higher-Mdot O stars. As the winds are radiatively driven, these scalings can be equivalently written as relations with the bolometric luminosity. The observed X-ray luminosities, and their trend with mass-loss rates, are well reproduced by new MHD models, although a few overluminous stars (mostly rapidly rotating objects) exist. No relation is found between other X-ray properties (plasma temperature, absorption) and stellar or magnetic parameters, contrary to expectations (e.g. higher temperature for stronger mass-loss rate). This suggests that the main driver for the plasma properties is different from the main determinant of the X-ray luminosity. Finally, variations of the X-ray hardnesses and luminosities, in phase with the stellar rotation period, are detected for some objects and they suggest some temperature stratification to exist in massive stars magnetospheres.
441 - Yael Naze 2014
Using an extensive X-ray dataset, we analyze the X-ray emission of the massive O-star Tr16-22, which was recently found to be magnetic. Its bright X-ray emission is found to be modulated with a ~54d period. This timescale should represent the rotatio nal timescale of the star, as for other magnetic massive stars. In parallel, new spectropolarimetric data confirm the published magnetic detection.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا