ترغب بنشر مسار تعليمي؟ اضغط هنا

In this work, we find by means of first principle calculations a new physical mechanism to generate a two dimensional electron gas, namely, the breaking of charge ordering at the surface of a charge ordered semiconductor due to the incomplete oxygen environment of the surface ions. The emergence of the 2D gas is independent of the presence of oxygen vacancies or polar discontinuities; this is a self-doping effect. This mechanism might apply to many charge ordered systems, in particular, we study the case of BaBiO3(001). In bulk, this material is a prototype of a forbidden valence compound in which the formal metallic Bi4+ state is skipped exhibiting a charge disproportionated Bi3+ - Bi5+ ordered structure. At room temperature, this charge disproportionation together with the breathing distortions gives rise to a Peierls semiconductor with monoclinic crystal structure. At higher temperature (T > 750 K) or upon doping, it turns cubic and metallic. Interestingly, doped BaBiO3 was one of the first non-cuprate high-Tc superconductors discovered. The outer layer of the Bi-terminated simulated surface turns more cubic- like and metallic while the inner layers remain in the insulating monoclinic state. On the other hand, the metallization does not occur for the Ba termination, a fact that makes this system appealing for nanostructuring. Finally, this finding sets another possible route for future exploration: the potential scenario of 2D superconductivity at the BaBiO3 surface.
We present an approach that combines the local density approximation (LDA) and the dynamical mean-field theory (DMFT) in the framework of the full-potential linear augmented plane waves (FLAPW) method. Wannier-like functions for the correlated shell are constructed by projecting local orbitals onto a set of Bloch eigenstates located within a certain energy window. The screened Coulomb interaction and Hunds coupling are calculated from a first-principle constrained RPA scheme. We apply this LDA+DMFT implementation, in conjunction with continuous-time quantum Monte-Carlo, to study the electronic correlations in LaFeAsO. Our findings support the physical picture of a metal with intermediate correlations. The average value of the mass renormalization of the Fe 3d bands is about 1.6, in reasonable agreement with the picture inferred from photoemission experiments. The discrepancies between different LDA+DMFT calculations (all technically correct) which have been reported in the literature are shown to have two causes: i) the specific value of the interaction parameters used in these calculations and ii) the degree of localization of the Wannier orbitals chosen to represent the Fe 3d states, to which many-body terms are applied. The latter is a fundamental issue in the application of many-body calculations, such as DMFT, in a realistic setting. We provide strong evidence that the DMFT approximation is more accurate and more straightforward to implement when well-localized orbitals are constructed from a large energy window encompassing Fe-3d, As-4p and O-2p, and point out several difficulties associated with the use of extended Wannier functions associated with the low-energy iron bands. Some of these issues have important physical consequences, regarding in particular the sensitivity to the Hunds coupling.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا