ترغب بنشر مسار تعليمي؟ اضغط هنا

Dense video captioning is a fine-grained video understanding task that involves two sub-problems: localizing distinct events in a long video stream, and generating captions for the localized events. We propose the Joint Event Detection and Descriptio n Network (JEDDi-Net), which solves the dense video captioning task in an end-to-end fashion. Our model continuously encodes the input video stream with three-dimensional convolutional layers, proposes variable-length temporal events based on pooled features, and generates their captions. Proposal features are extracted within each proposal segment through 3D Segment-of-Interest pooling from shared video feature encoding. In order to explicitly model temporal relationships between visual events and their captions in a single video, we also propose a two-level hierarchical captioning module that keeps track of context. On the large-scale ActivityNet Captions dataset, JEDDi-Net demonstrates improved results as measured by standard metrics. We also present the first dense captioning results on the TACoS-MultiLevel dataset.
Generating natural language descriptions for in-the-wild videos is a challenging task. Most state-of-the-art methods for solving this problem borrow existing deep convolutional neural network (CNN) architectures (AlexNet, GoogLeNet) to extract a visu al representation of the input video. However, these deep CNN architectures are designed for single-label centered-positioned object classification. While they generate strong semantic features, they have no inherent structure allowing them to detect multiple objects of different sizes and locations in the frame. Our paper tries to solve this problem by integrating the base CNN into several fully convolutional neural networks (FCNs) to form a multi-scale network that handles multiple receptive field sizes in the original image. FCNs, previously applied to image segmentation, can generate class heat-maps efficiently compared to sliding window mechanisms, and can easily handle multiple scales. To further handle the ambiguity over multiple objects and locations, we incorporate the Multiple Instance Learning mechanism (MIL) to consider objects in different positions and at different scales simultaneously. We integrate our multi-scale multi-instance architecture with a sequence-to-sequence recurrent neural network to generate sentence descriptions based on the visual representation. Ours is the first end-to-end trainable architecture that is capable of multi-scale region processing. Evaluation on a Youtube video dataset shows the advantage of our approach compared to the original single-scale whole frame CNN model. Our flexible and efficient architecture can potentially be extended to support other video processing tasks.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا