ترغب بنشر مسار تعليمي؟ اضغط هنا

This study utilizes a sociocultural interpretation of Self-Determination Theory to better understand the role that learning contexts play in generating student motivation, engagement, and identity. By drawing on previous motivation research we develo p a model that describes how student senses of belonging in social settings can transform their goals and experiences. We use the extremes of fear and integrity to model student motivations to engage in activities. Student senses of connection and belonging (or not) in social settings drives whether they feel integrated with or alienated from their environments. Our model is based on three studies and suggests that a sense of belonging emerges through the alignment of goals and practices of the individual and an activity. This model is applied to two examples to illustrate how social connection or isolation can be exhibited in a physics classroom setting. We conclude by discussing the role of the teacher in designing classroom environments that support students engaging.
Students who serve as Learning Assistants (LAs) and have the opportunity to teach the content they are learning, while also studying effective teaching pedagogy, have demonstrated achievement gains in advanced content courses and positive shifts in a ttitudes about learning science [V. Otero, S. Pollock & N. Finkelstein, Amer J Physics 78, 11 (2010)]. Although the LA experience is also valuable for high school students, the tight schedule and credit requirements of advanced high school students limit opportunities for implementing traditional LA programs at the high school level. In order to provide high school physics students with an LA-like experience, iPads were used as tools for students to synthesize screencast video tutorials for students to access, review and evaluate. The iPads were utilized in a one-to-one tablet-to-student environment throughout the course of an entire school year. This research investigates the impact of a one-to-one iPad environment and the use of iPads to create teaching-to-learn (TtL) experiences on student agency and attitudes toward learning science. Project funded by NSF grant # DUE 934921.
This study involves a theory-based teacher professional development model that was created to address two problems. First, dominant modes of science teacher professional development have been inadequate in helping teachers create learning environment s that engage students in the practices of science, as called for most recently by the NGSS. Second, there is a lack of teacher presence and voice in the national dialogue on education reform and assessment. In this study, teachers led and participated in a professional community focusing on STEM education research. In this community, teachers became increasingly responsible for designing and enacting learning experiences for themselves and their colleagues. We investigated the characteristics of the science teachers learning process. Findings suggest that teachers who participated in this model generated knowledge and practices about teaching and learning while simultaneously developing identities and practices as education reform advocates and agents of educational change.
English Language Learners (ELLs) are frequently left on the periphery of classroom interactions. Due to misalignment of language skills, teachers and peers communicate with these students less often, decreasing the number of opportunities to engage. Exclusion can be avoided with learning activities that invite all students to participate and contribute ideas. We argue that environments and activities that privilege scientific inductive reasoning increase possibilities for emerging bilingual students to engage. This study investigated first-grade students discussions about factors that affect how objects float. Students came from a variety of language backgrounds; all were considered beginner/intermediate ELLs. Results show that the goal of inducing principles from actual phenomena encouraged students to communicate their ideas and reasoning, boosting students confidence in expressing themselves. Following the hybrid space argument of Vygotskys theory of concept formation, we illustrate that physics can be particularly suitable context for the co-development of concepts and English language skills.
Despite the extensive body of research that supports scientific inquiry and argumentation as cornerstones of physics learning, these strategies continue to be virtually absent in most classrooms, especially those that involve students who are learnin g English as a second language. This study presents results from an investigation of 3rd grade students discourse about how length and tension affect the sound produced by a string. These students came from a variety of language backgrounds, and all were learning English as a second language. Our results demonstrate varying levels, and uses, of experiential, imaginative, and mechanistic reasoning strategies. Using specific examples from students discourse, we will demonstrate some of the productive aspects of working within multiple language frameworks for making sense of physics. Conjectures will be made about how to utilize physics as a context for English Language Learners to further conceptual understanding, while developing their competence in the English language.
In a climate where teachers feel deprofessionalized at the hands of regulations, testing, and politics, it is vital that teachers become empowered both in their own teaching and as agents of change. This physics education research study investigates the Streamline to Mastery professional development program, in which the teachers design professional development opportunities for themselves and for fellow teachers. The research reported here describes the process of teacher professional growth through changes in roles and identities. Videos, emails, and interviews were analyzed to glean insight into practice and participation shifts as these physical science teachers formed a community and engaged in their own classroom research. Implications for the role of PER in teacher professional development and teacher preparation will be discussed.
This study investigates how an urban, high school physics class responded to the inclusion of a classroom set of iPads and associated applications, such as screencasting. The participatory roles of students and the expressions of their relationships to physics were examined. Findings suggest that iPad technology altered classroom norms and student relationships to include increased student agency and use of evidence. Findings also suggest that the iPad provided a connection between physics, social status, and play. Videos, observations, interviews, and survey responses were analyzed to provide insight into the nature of these changes.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا