ترغب بنشر مسار تعليمي؟ اضغط هنا

We are leading a comprehensive multi-waveband monitoring program of 34 gamma-ray bright blazars designed to locate the emission regions of blazars from radio to gamma-ray frequencies. The maps are anchored by sequences of images in both total and pol arized intensity obtained with the VLBA at an angular resolution of ~ 0.1 milliarcseconds. The time-variable linear polarization at radio to optical wavelengths and radio to gamma-ray light curves allow us to specify the locations of flares relative to bright stationary features seen in the images and to infer the geometry of the magnetic field in different regions of the jet. Our data reveal that some flares occur simultaneously at different wavebands and others are only seen at some of the frequencies. The flares are often triggered by a superluminal knot passing through the stationary core on the VLBA images. Other flares occur upstream or even parsecs downstream of the core.
We analyze the behavior of the parsec-scale jet of the quasar 3C~454.3 during pronounced flaring activity in 2005-2008. Three major disturbances propagated down the jet along different trajectories with Lorentz factors $Gamma>$10. The disturbances sh ow a clear connection with millimeter-wave outbursts, in 2005 May/June, 2007 July, and 2007 December. High-amplitude optical events in the $R$-band light curve precede peaks of the millimeter-wave outbursts by 15-50 days. Each optical outburst is accompanied by an increase in X-ray activity. We associate the optical outbursts with propagation of the superluminal knots and derive the location of sites of energy dissipation in the form of radiation. The most prominent and long-lasting of these, in 2005 May, occurred closer to the black hole, while the outbursts with a shorter duration in 2005 Autumn and in 2007 might be connected with the passage of a disturbance through the millimeter-wave core of the jet. The optical outbursts, which coincide with the passage of superluminal radio knots through the core, are accompanied by systematic rotation of the position angle of optical linear polarization. Such rotation appears to be a common feature during the early stages of flares in blazars. We find correlations between optical variations and those at X-ray and $gamma$-ray energies. We conclude that the emergence of a superluminal knot from the core yields a series of optical and high-energy outbursts, and that the mm-wave core lies at the end of the jets acceleration and collimation zone.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا