ترغب بنشر مسار تعليمي؟ اضغط هنا

Demagnetization cooling relies on spin-orbit coupling that brings motional and spin degrees of freedom into thermal equilibrium. In the case of a gas, one has the advantage that the spin degree of freedom can be cooled very efficiently using optical pumping. We investigate demagnetization cooling of a chromium gas in a deep optical dipole trap over a large temperature range and reach high densities up to $5times 10^{19} m^{-3}$. We study the loss mechanism under such extreme conditions and identify excited-state collisions as the main limiting process. We discuss that in some systems demagnetization cooling has a realistic potential of reaching degeneracy by optical cooling only.
We demonstrate continuous Sisyphus cooling combined with a continuous loading mechanism used to efficiently slow down and accumulate atoms from a guided beam. While the loading itself is based on a single slowing step, applying a radio frequency fiel d forces the atoms to repeat this step many times resulting in a so-called Sisyphus cooling. This extension allows efficient loading and cooling of atoms from a wide range of initial beam conditions. We study the interplay of the continuous loading and simultaneous Sisyphus cooling in different density regimes. In the case of a low density flux we observe a relative gain in phase-space density of nine orders of magnitude. This makes the presented scheme an ideal tool for reaching collisional densities enabling evaporative cooling - in spite of unfavourable initial conditions.
Recently, we have experimentally demonstrated a continuous loading mechanism for an optical dipole trap from a guided atomic beam [1]. The observed evolution of the number of atoms and temperature in the trap are consequences of the unusual trap geom etry. In the present paper, we develop a model based on a set of rate equations to describe the loading dynamics of such a mechanism. We consider the collision statistics in the non-uniform trap potential that leads to twodimensional evaporation. The comparison between the resulting computations and experimental data allows to identify the dominant loss process and suggests ways to enhance the achievable steady-state atom number. Concerning subsequent evaporative cooling, we find that the possibility of controlling axial and radial confinement independently allows faster evaporation ramps compared to single beam optical dipole traps.
We demonstrate the fast accumulation of Cr atoms in a conservative potential from a magnetically guided atomic beam. Without laser cooling on a cycling transition, a single dissipative step realized by optical pumping allows to load atoms at a rate o f 2*10^7 1/s in the trap. Within less than 100 ms we reach the collisionally dense regime, from which we directly produce a Bose-Einstein condensate with subsequent evaporative cooling. This constitutes a new approach to degeneracy where, provided a slow beam of particles can be produced by some means, Bose-Einstein condensation can be reached for species without a cycling transition.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا