ترغب بنشر مسار تعليمي؟ اضغط هنا

In this work we present numerical study of a trapped Bose-Einstein condensate perturbed by an alternating potential. The relevant physical situation has been recently realized in experiment, where the trapped condensate of $^{87}$Rb, being strongly p erturbed, exhibits the set of spatial structures. Firstly, regular vortices are detected. Further, increasing either the excitation amplitude or modulation time results in the transition to quantum vortex turbulence, followed by a granular state. Numerical simulation of the nonequilibrium Bose-condensed system is based on the solution of the time-dependent 3D nonlinear Schr{o}dinger equation within the static and dynamical algorithms. The damped gradient step and time split-step Fourier transform methods are employed. We demonstrate that computer simulations qualitatively reproduce the experimental picture, and describe well the main experimental observables.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا