ترغب بنشر مسار تعليمي؟ اضغط هنا

A metal-insulator transition (MIT) in BiFeO$_3$ under pressure was investigated by a method combining Generalized Gradient Corrected Local Density Approximation with Dynamical Mean-Field Theory (GGA+DMFT). Our paramagnetic calculations are found to b e in agreement with experimental phase diagram: Magnetic and spectral properties of BiFeO3 at ambient and high pressures were calculated for three experimental crystal structures $R3c$, $Pbnm$ and $Pmbar{3}m$. At ambient pressure in the $R3c$ phase, an insulating gap of 1.2 eV was obtained in good agreement with its experimental value. Both $R3c$ and $Pbnm$ phases have a metal-insulator transition that occurs simultaneously with a high-spin (HS) to low-spin (LS) transition. The critical pressure for the $Pbnm$ phase is 25-33 GPa that agrees well with the experimental observations. The high pressure and temperature $Pmbar{3}m$ phase exhibits a metallic behavior observed experimentally as well as in our calculations in the whole range of considered pressures and undergoes to the LS state at 33 GPa where a $Pbnm$ to $Pmbar{3}m$ transition is experimentally observed. The antiferromagnetic GGA+DMFT calculations carried out for the $Pbnm$ structure result in simultaneous MIT and HS-LS transitions at a critical pressure of 43 GPa in agreement with the experimental data.
Spectral properties of fcc-Ce have been calculated in frames of modern DFT+DMFT method with Hybridization expansion CT-QMC solver. The influence of Hunds exchange and spin-orbit coupling (SOC) on spectral properties of Ce were investigated. SOC is re sponsible for the shape of spectra near the Fermi level and Hunds exchange interaction doesnt change the obtained spectra and can be neglected.
An approach to compute exchange parameters of the Heisenberg model in plane-wave-based methods is presented. This calculation scheme is based on the Greens function method and Wannier function projection technique. It was implemented in the framework of the pseudopotential method and tested on such materials as NiO, FeO, Li2MnO3, and KCuF3. The obtained exchange constants are in a good agreement with both the total energy calculations and experimental estimations for NiO and KCuF3. In the case of FeO our calculations explain the pressure dependence of the Neel temperature. Li2MnO3 turns out to be a Slater insulator with antiferromagnetic nearest-neighbor exchange defined by the spin splitting. The proposed approach provides a unique way to analyze magnetic interactions, since it allows one to calculate orbital contributions to the total exchange coupling and study the mechanism of the exchange coupling.
The most general way to describe localized atomic-like electronic states in strongly correlated compounds is to utilize Wannier functions. In the present paper we continue the development of widely-spread DFT+U method onto Wannier function basis set and propose the technique to calculate the Hubbard contribution to the forces. The technique was implemented as a part of plane-waves pseudopotential code Quantum-ESPRESSO and successfully tested on a charge transfer insulator NiO.
The temperature dependence of the paramagnetic susceptibility of the iron pnictide superconductor KFe2As2 and its connection with the spectral properties of that material is investigated by a combination of density functional theory (DFT) in the loca l density approximation and dynamical mean-field theory (DMFT). Unlike other iron pnictide parent compounds where the typical oxidation state of iron is 2, the formal valence of Fe in KFe2As2 is 2.5, corresponding to an effective doping with 0.5 hole per iron atom compared to, for example, BaFe2As2. This shifts the chemical potential and thereby reduces the distance between the peaks in the spectral functions of KFe2As2 and the Fermi energy as compared to BaFe2As2. The shift, which is clearly seen on the level of DFT as well as in DMFT, is further enhanced by the strong electronic correlations in KFe2As2. In BaFe2As2 the presence of these peaks results [Phys. Rev. B 86, 125124 (2012)] in a temperature increase of the susceptibility up to a maximum at ~1000 K. While the temperature increase was observed experimentally the decrease at even higher temperatures is outside the range of experimental observability. We predict that in KFe2As2 the situation is different. Namely, the reduction of the distance between the peaks and the Fermi level due to doping is expected to shift the maximum in the susceptibility to much lower temperatures, such that the decrease of the susceptibility should become visible in experiment.
Band structure of metallic sodium cobaltate Na$_x$CoO$_2$ ($x$=0.33, 0.48, 0.61 0.72) has been investigated by local density approximation+Hubbard $U$ (LDA+$U$) method and within Gutzwiller approximation for the Co-$t_{2g}$ manifold. Correlation effe cts being taken into account results in suppression of the $e_g$ hole pockets at the Fermi surface in agreement with recent angle-resolved photo-emission spectroscopy (ARPES) experiments. In the Gutzwiller approximation the bilayer splitting is significantly reduced due to the correlation effects. The formation of high spin (HS) state in Co $d$-shell was shown to be very improbable.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا