ترغب بنشر مسار تعليمي؟ اضغط هنا

77 - V.C. Geers 2007
Our aim is to determine the presence and location of the emission from polycyclic aromatic hydrocarbons (PAHs) towards low and intermediate mass young stars with disks using large aperture telescopes. VLT-VISIR N-band spectra and VLT-ISAAC and VLT- NACO L-band spectra of 29 sources are presented, spectrally resolving the 3.3, 8.6, 11.2, and 12.6 micron PAH features. Spatial-extent profiles of the features and the continuum emission are derived and used to associate the PAH emission with the disks. The results are discussed in the context of recent PAH-emission disk models. The 3.3, 8.6, and 11.2 micron PAH features are detected toward a small fraction of the T Tauri stars, with typical upper limits between 1E-15 and 5E-17 W/m^2. All 11.2 micron detections from a previous Spitzer survey are confirmed with (tentative) 3.3 micron detections, and both the 8.6 and the 11.2 micron features are detected in all PAH sources. For 6 detections, the spatial extent of the PAH features is confined to scales typically smaller than 0.12-0.34, consistent with the radii of 12-60 AU disks at their distances (typically 150 pc). For 3 additional sources, WL 16, HD 100546, and TY CrA, one or more of the PAH features are more extended than the hot dust continuum of the disk, whereas for Oph IRS 48, the size of the resolved PAH emission is confirmed as smaller than for the large grains. For HD 100546, the 3.3 micron emission is confined to a small radial extent of 12 +- 3 AU, most likely associated with the outer rim of the gap in this disk. Gaps with radii out to 10-30 AU may also affect the observed PAH extent for other sources. For both Herbig Ae and T Tauri stars, the small measured extents of the 8.6 and 11.2 micron features are consistent with larger (>= 100 carbon atoms) PAHs.
65 - V.C. Geers 2007
We present spatially resolved mid-infrared images of the disk surrounding the young star IRS 48 in the Ophiuchus cloud complex. The disk exhibits a ring-like structure at 18.7 micron, and is dominated by very strong emission from polycyclic aromatic hydrocarbons at shorter wavelengths. This allows a detailed study of the relative distributions of small and large dust grains. Images of IRS 48 in 5 mid-infrared bands from 8.6 to 18.7 micron as well as a low resolution N-band spectrum are obtained with VLT-VISIR. Optical spectroscopy is used to determine the spectral type of the central star and to measure the strength of the Halpha line. The 18.7 micron ring peaks at a diameter of 110 AU, with a gap of ~ 60 AU. The shape of the ring is consistent with an inclination of i = 48 +- 8 degrees. In contrast, the 7.5-13 micron PAH emission bands are centered on the source and appear to fill the gap within the ring. The measured PAH line strengths are 10-100x stronger than those typically measured for young M0 stars and can only be explained with a high PAH abundance and/or strong excess optical/UV emission. The morphology of the images, combined with the absence of a silicate emission feature, imply that the inner disk has been cleared of micron-sized dust but with a significant population of PAHs remaining. We argue that the gap can be due to grain growth and settling or to clearing by an unseen planetary or low-mass companion. IRS 48 may represent a short-lived transitional phase from a classical to a weak-line T Tauri star.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا