ترغب بنشر مسار تعليمي؟ اضغط هنا

We consider massive half-integer higher spin fields coupled to an external constant electromagnetic field in flat space of an arbitrary dimension and construct a gauge invariant Lagrangian in the linear approximation in the external field. A procedur e for finding the gauge-invariant Lagrangians is based on the BRST construction where no off-shell constraints on the fields and on the gauge parameters are imposed from the very beginning. As an example of the general procedure, we derive a gauge invariant Lagrangian for a massive fermionic field with spin 3/2 which contains a set of auxiliary fields and gauge symmetries.
We study a possibility of Lagrangian formulation for free higher spin bosonic totally symmetric tensor field on the background manifold characterizing by the arbitrary metric, vector and third rank tensor fields in framework of BRST approach. Assumin g existence of massless and flat limits in the Lagrangian and using the most general form of the operators of constraints we show that the algebra generated by these operators will be closed only for constant curvature space with no nontrivial coupling to the third rank tensor and the strength of the vector fields. This result finally proves that the consistent Lagrangian formulation at the conditions under consideration is possible only in constant curvature Riemann space.
We explore a new possibility of BRST construction in higher spin field theory to obtain a consistent Lagrangian for massive spin-2 field in Einstein space. Such approach automatically leads to gauge invariant Lagrangian with suitable auxiliary and St uckelberg fields. It is proved that in this case a propagation of spin-2 field is hyperbolic and causal. Also we extend notion of partial masslessness for spin-2 field in the background under consideration.
We develop the BRST approach to gauge invariant Lagrangian construction for the massive mixed symmetry integer higher spin fields described by the rank-two Young tableaux in arbitrary dimensional Minkowski space. The theory is formulated in terms of auxiliary Fock space. No off-shell constraints on the fields and the gauge parameters are imposed. The approach under consideration automatically leads to a gauge invariant Lagrangian for massive theory with all appropriate Stuckelberg fields. It is shown that all the restrictions defining an irreducible representation of the Poincare group arise from Lagrangian formulation as a consequence of the equations of motion and gauge transformations. As an example of the general procedure, we derive the gauge-invariant Lagrangian for massive rank-2 antisymmetric tensor field containing the complete set of auxiliary fields and gauge parameters.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا