ترغب بنشر مسار تعليمي؟ اضغط هنا

The generalization of Einsteins special theory of relativity (SRT) is proposed. In this model the possibility of unification of scalar gravity and electromagnetism into a single united field is considered. Formally, the generalization of the SRT is t hat instead of (1+3)-dimensional Minkowski space the (1+4)-dimensional extension G is considered. As a fifth additional coordinate the interval S is used. This value is saved under the usual Lorentz transformations in Minkowski space M, but it changes when the transformations in the extended space G are used. We call this model the extended space model (ESM). From a physical point of view our expansion means that processes in which the rest mass of the particles changes are acceptable now. If the rest mass of a particle does not change and the physical quantities do not depend on an additional variable S, then the electromagnetic and gravitational fields exist independently of each other. But if the rest mass is variable and there is a dependence on S, then these two fields are combined into a single united field. In the extended space model a photon can have a nonzero mass and this mass can be either positive or negative. The gravitational effects such as the speed of escape, gravitational red shift and deflection of light can be analyzed in the frame of the extended space model. In this model all these gravitational effects can be found algebraically by the rotations in the (1+4) dimensional space. Now it becomes possible to predict some future results of visible size of super massive objects in our Universe due to new stage of experimental astronomy development in the Radio Astron Project and analyze phenomena of the star V838 Monocerotis explosion as possible Local Big Bang (LBB).
We propose to measure the rate Rd for muon capture on the deuteron to better than 1.5% precision. This process is the simplest weak interaction process on a nucleus that can both be calculated and measured to a high degree of precision. The measureme nt will provide a benchmark result, far more precise than any current experimental information on weak interaction processes in the two-nucleon system. Moreover, it can impact our understanding of fundamental reactions of astrophysical interest, like solar pp fusion and the $ u+d$ reactions observed by the Sudbury Neutrino Observatory. Recent effective field theory calculations have demonstrated, that all these reactions are related by one axial two-body current term, parameterized by a single low-energy constant. Muon capture on the deuteron is a clean and accurate way to determine this constant. Once it is known, the above mentioned astrophysical, as well as other important two-nucleon reactions, will be determined in a model independent way at the same precision as the measured muon capture reaction.
The rate of nuclear muon capture by the proton has been measured using a new experimental technique based on a time projection chamber operating in ultra-clean, deuterium-depleted hydrogen gas at 1 MPa pressure. The capture rate was obtained from the difference between the measured $mu^-$ disappearance rate in hydrogen and the world average for the $mu^+$ decay rate. The targets low gas density of 1% compared to liquid hydrogen is key to avoiding uncertainties that arise from the formation of muonic molecules. The capture rate from the hyperfine singlet ground state of the $mu p$ atom is measured to be $Lambda_S=725.0 pm 17.4 s^{-1}$, from which the induced pseudoscalar coupling of the nucleon, $g_P(q^2=-0.88 m_mu^2)=7.3 pm 1.1$, is extracted. This result is consistent with theoretical predictions for $g_P$ that are based on the approximate chiral symmetry of QCD.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا