ترغب بنشر مسار تعليمي؟ اضغط هنا

Observations of SN 1987A by the Chandra High Energy Transmission Grating (HETG) in 1999 and the XMM-Newton Reflection Grating Spectrometer (RGS) in 2003 show very broad (v-b) lines with a full-width at half-maximum (FWHM) of order 10^4 kms; at these times the blast wave was primarily interacting with the HII region around the progenitor. Since then, the X-ray emission has been increasingly dominated by narrower components as the blast wave encounters dense equatorial ring (ER) material. Even so, continuing v-b emission is seen in the grating spectra suggesting that interaction with HII region material is on-going. Based on the deep HETG 2007 and 2011 data sets, and confirmed by RGS and other HETG observations, the v-b component has a width of 9300 +/-2000 kms FWHM and contributes of order 20% of the current 0.5--2 keV flux. Guided by this result, SN 1987As X-ray spectra are modeled as the weighted sum of the non-equilibrium-ionization (NEI) emission from two simple 1D hydrodynamic simulations, this 2x1D model reproduces the observed radii, light curves, and spectra with a minimum of free parameters. The interaction with the HII region (rho_init sim 130 amu/cc, +/- 15 degrees opening angle) produces the very-broad emission lines and most of the 3-10 keV flux. Our ER hydrodynamics, admittedly a crude approximation to the multi-D reality, gives ER densities of order 10^4 amu/cc, requires dense clumps (x5.5 density enhancement in sim 30% of the volume), and it predicts that the 0.5-2 keV flux will drop at a rate of sim 17% per year once no new dense ER material is being shocked.
Magnetars are a special class of slowly rotating neutron stars with extremely strong magnetic fields -- at least an order of magnitude larger than those of the normal radio pulsars. The potential evolutionary links and differences between these two t ypes of objects are still unknown; recent studies, however, have provided circumstantial evidence connecting magnetars with very massive progenitor stars. Here we report the discovery of an infrared elliptical ring or shell surrounding the magnetar SGR 1900+14. The appearance and energetics of the ring are difficult to interpret within the framework of the progenitors stellar mass loss or the subsequent evolution of the supernova remnant. We suggest instead that a dust-free cavity was produced in the magnetar environment by the giant flare emitted by the source in August 1998. Considering the total energy released in the flare, the theoretical dust--destruction radius matches well with the observed dimensions of the ring. We conclude that SGR 1900+14 is unambiguously associated with a cluster of massive stars, thereby solidifying the link between magnetars and massive stars.
81 - F. E. Bauer 2008
We report on new VLT optical spectroscopic and multi-wavelength archival observations of SN1996cr, a previously identified ULX known as Circinus Galaxy X-2. Our optical spectrum confirms SN1996cr as a bona fide type IIn SN, while archival imaging iso lates its explosion date to between 1995-02-28 and 1996-03-16. SN1996cr is one of the closest SNe (~3.8 Mpc) in the last several decades and in terms of flux ranks among the brightest radio and X-ray SNe ever detected. The wealth of optical, X-ray, and radio observations that exist for this source provide relatively detailed constraints on its post-explosion expansion and progenitor history, including an preliminary angular size constaint from VLBI. The archival X-ray and radio data imply that the progenitor of SN1996cr evacuated a large cavity just prior to exploding: the blast wave likely expanded for ~1-2 yrs before eventually striking the dense circumstellar material which surrounds SN1996cr. The X-ray and radio emission, which trace the progenitor mass-loss rate, have respectively risen by a factor of ~2 and remained roughly constant over the past 7 yr. This behavior is reminiscent of the late rise of SN1987A, but 1000 times more luminous and much more rapid to onset. Complex Oxygen line emission in the optical spectrum further hints at a possible concentric shell or ring-like structure. The discovery of SN1996cr suggests that a substantial fraction of the closest SNe observed in the last several decades have occurred in wind-blown bubbles. An Interplanetary Network position allows us to reject a tentative GRB association with BATSE 4B960202. [Abridged]
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا