ترغب بنشر مسار تعليمي؟ اضغط هنا

70 - V. Testa 2012
Some globular clusters in our Galaxy are noticeably rich in low-mass X-ray binaries. Terzan 5 has the richest population among globular clusters of X- and radio-pulsars and low-mass X-ray binaries. The detection and study of optical/IR counterparts o f low-mass X-ray binaries is fundamental to characterizing both the low-mass donor in the binary system and investigating the mechanisms of the formation and evolution of this class of objects. We aim at identifying the near-IR counterpart of the 11 Hz pulsar IGRJ17480-2446 discovered in Terzan 5. Adaptive optics (AO) systems represent the only possibility for studying the very dense environment of GC cores from the ground. We carried out observations of the core of Terzan 5 in the near-IR bands with the ESO-VLT NAOS-CONICA instrument. We present the discovery of the likely counterpart in the Ks band and discuss its properties both in outburst and in quiescence. Archival HST observations are used to extend our discussion to the optical bands. The source is located at the blue edge of the turn-off area in the color-magnitude diagram of the cluster. Its luminosity increase from quiescence to outburst, by a factor 2.5, allows us to discuss the nature of the donor star in the context of the double stellar generation population of Terzan 5 by using recent stellar evolution models.
594 - N. Rea , V. Testa 2010
We report on the first near-infrared observations obtained for Rotating RAdio Transients (RRATs). Using adaptive optics devices mounted on the ESO Very Large Telescope (VLT), we observed two objects of this class: RRAT J1819-1458, and RRAT J1317-5759 . These observations have been performed in 2006 and 2008, in the J, H and Ks bands. We found no candidate infrared counterpart to RRAT J1317-5759, down to a limiting magnitude of Ks ~ 21. On the other hand, we found a possible candidate counterpart for RRAT J1819-1458, having a magnitude of Ks=20.96+/-0.10 . In particular, this is the only source within a 1 sigma error circle around the sources accurate X-ray position, although given the crowded field we cannot exclude that this is due to a chance coincidence. The infrared flux of the putative counterpart to the highly magnetic RRAT J1819-1458, is higher than expected from a normal radio pulsar, but consistent with that seen from magnetars. We also searched for the near-infrared counterpart to the X-ray diffuse emission recently discovered around RRAT J1819-1458, but we did not detect this component in the near-infrared band. We discuss the luminosity of the putative counterpart to RRAT J1819-1458, in comparison with the near-infrared emission of all isolated neutron stars detected to date in this band (5 pulsars and 7 magnetars).
491 - V. Testa 2008
<Context>. We report on near-infrared (IR) observations of the three anomalous X-ray pulsars XTE J1810-197, 1RXS J1708-4009, 1E 1841-045 and the soft gamma-ray repeater SGR 1900+14, taken with the ESO-VLT, the Gemini, and the CFHT telescopes. <Aims>. This work is aimed at identifying and/or confirming the IR counterparts of these magnetars, as well as at measuring their possible IR variability. <Methods>. In order to perform photometry of objects as faint as Ks~20, we have used data taken with the largest telescopes, equipped with the most advanced IR detectors and in most of the cases with Adaptive Optics devices. The latter are critical to achieve the sharp spatial accuracy required to pinpoint faint objects in crowded fields. <Results>. We confirm with high confidence the identification of the IR counterpart to XTE J1810-197, and its IR variability. For 1E 1841-045 and SGR 1900+14 we propose two candidate IR counterparts based on the detection of IR variability. For 1RXS J1708-4009 we show that none of the potential counterparts within the source X-ray error circle can be yet convincingly associated with this AXP. <Conclusions>. The IR variability of the AXP XTE J1810-197 does not follow the same monotonic decrease of its post-outburst X-ray emission. Instead, the IR variability appears more similar to the one observed in radio band, although simultaneous IR and radio observations are crucial to draw any conclusion in this respect. For 1E 1841-045 and SGR 1900+14, follow-up observations are needed to confirm our proposed candidates with higher confidence.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا