ترغب بنشر مسار تعليمي؟ اضغط هنا

Radiation background studies pertaining to $0 ubetabeta$ decay in $^{124}$Sn have been carried out. A TiLES setup has been installed at TIFR for this purpose. Neutron-induced background is studied in the TIN.TIN detector materials using fast neutron activation technique. The neutron flux ($E_nleq15$ MeV) resulting from SF and ($alpha, n$) interactions for the rock in the INO cavern is estimated using MC simulations. A two layer composite shield of borated paraffin (20 cm) + Pb (5 cm) is proposed for the reduction of neutron flux.
Development of NTD Ge sensors has been initiated for low temperature (mK) thermometry in The India-based Tin detector (TIN.TIN). NTD Ge sensors are prepared by thermal neutron irradiation of device grade Ge samples at Dhruva reactor, BARC, Mumbai. De tailed measurements have been carried out in irradiated samples for estimating the carrier concentration and fast neutron induced defects. The Positron Annihilation Lifetime Spectroscopy (PALS) measurements indicated monovacancy type defects for all irradiated samples, while Channeling studies employing RBS with 2 MeV alpha particles, revealed no significant defects in the samples exposed to fast neutron fluence of $sim 4times10^{16}/cm^2$. Both PALS and Channeling studies have shown that vacuum annealing at 600 $^circ$C for $sim2$ hours is sufficient to recover the damage in the irradiated samples, thereby making them suitable for the sensor development.
The combination of low mass density, high frequency, and high quality-factor of mechanical resonators made of two-dimensional crystals such as graphene make them attractive for applications in force sensing/mass sensing, and exploring the quantum reg ime of mechanical motion. Microwave optomechanics with superconducting cavities offers exquisite position sensitivity and enables the preparation and detection of mechanical systems in the quantum ground state. Here, we demonstrate coupling between a multilayer graphene resonator with quality factors up to 220,000 and a high-$textit{Q}$ superconducting cavity. Using thermo-mechanical noise as calibration, we achieve a displacement sensitivity of 17 fm/$sqrt{text{Hz}}$. Optomechanical coupling is demonstrated by optomechanically induced reflection (OMIR) and absorption (OMIA) of microwave photons. We observe 17 dB of mechanical microwave amplification and signatures of strong optomechanical backaction. We extract the cooperativity $C$, a characterization of coupling strength, quantitatively from the measurement with no free parameters and find $C=8$, promising for the quantum regime of graphene motion.
Seyfert galaxies have traditionally been classified as radio-quiet active galactic nuclei. A proper consideration of the nuclear optical emission however proves that a majority of Seyferts are radio-loud. Kpc-scale radio lobes/bubbles are in fact rev ealed in sensitive observations at low radio frequencies of several Seyferts. Through the use of very long baseline interferometry, we have been able to determine the direction of the parsec-scale jets in some of these Seyfert galaxies. The misalignment between the parsec-scale jets and the kpc-scale lobes that is typically observed, is either suggestive of no connection between the two, or the presence of curved jets that power the radio lobes. In this context, we briefly discuss our new low radio frequency GMRT observations of two Seyfert galaxies with lobes.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا