ترغب بنشر مسار تعليمي؟ اضغط هنا

The observation is presented of naturally occurring pairing of particles and their cooperative drift in a two-dimensional plasma crystal. A single layer of plastic microspheres was suspended in the plasma sheath of a capacitively coupled rf discharge in argon at a low pressure of 1 Pa. The particle dynamics were studied by combining the top-view and side-view imaging of the suspension. Cross analysis of the particle trajectories allowed us to identify naturally occurring metastable pairs of particles. The lifetime of pairs was long enough for their reliable identification.
118 - L. Worner , C. Rath , V. Nosenko 2012
The structure of driven three-dimensional complex plasma clusters was studied experimentally. The clusters consisted of around 60 hollow glass spheres with a diameter of 22 microns that were suspended in a plasma of rf discharge in argon. The particl es were confined in a glass box with conductive yet transparent coating on its four side walls, this allowed to manipulate the particle cluster by biasing the confining walls in a certain sequence. In this work, a rotating electric field was used to drive the clusters. Depending on the excitation frequency, the clusters rotated (10^4 - 10^7 times slower than the rotating field) or remained stationary. The cluster structure was neither that of nested spherical shells nor simple chain structure. Strings of various lengths were found consisting of 2 to 5 particles, their spatial and temporal correlations were studied. The results are compared to recent simulations.
Experimental results on the dislocation dynamics in a two-dimensional plasma crystal are presented. Edge dislocations were created in pairs in lattice locations where the internal shear stress exceeded a threshold and then moved apart in the glide pl ane at a speed higher than the sound speed of shear waves, $C_T$. The experimental system, a plasma crystal, allowed observation of this process at an atomistic (kinetic) level. The early stage of this process is identified as a stacking fault. At a later stage, supersonically moving dislocations generated shear-wave Mach cones.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا