ترغب بنشر مسار تعليمي؟ اضغط هنا

We derive light-cone sum rules for the electromagnetic nucleon form factors including the next-to-leading-order corrections for the contribution of twist-three and twist-four operators and a consistent treatment of the nucleon mass corrections. The e ssence of this approach is that soft Feynman contributions are calculated in terms of small transverse distance quantities using dispersion relations and duality. The form factors are thus expressed in terms of nucleon wave functions at small transverse separations, called distribution amplitudes, without any additional parameters. The distribution amplitudes, therefore, can be extracted from the comparison with the experimental data on form factors and compared to the results of lattice QCD simulations. A selfconsistent picture emerges, with the three valence quarks carrying 40%:30%:30% of the proton momentum.
We extract the form factors relevant for semileptonic decays of D and B mesons from a relativistic computation on a fine lattice in the quenched approximation. The lattice spacing is a=0.04 fm (corresponding to a^{-1}=4.97 GeV), which allows us to ru n very close to the physical B meson mass, and to reduce the systematic errors associated with the extrapolation in terms of a heavy quark expansion. For decays of D and D_s mesons, our results for the physical form factors at q^2=0 are as follows: f_+^{D to pi}(0)= 0.74(6)(4), f_+^{D to K}(0)= 0.78(5)(4) and f_+^{D_s to K}(0)=0.68(4)(3). Similarly, for B and B_s we find: f_+^{B to pi}(0)=0.27(7)(5), f_+^{B to K}(0)=0.32(6)(6) and f_+^{B_s to K}(0)=0.23(5)(4). We compare our results with other quenched and unquenched lattice calculations, as well as with light-cone sum rule predictions, finding good agreement.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا