ترغب بنشر مسار تعليمي؟ اضغط هنا

81 - M. V. Lebedev 2013
The problem of the change of photon distribution of thermal light passing through the body surface into the vacuum is discussed. It is shown that the usual assumption that each photon passes through the boundary totally independent of others contradi cts the expression for the fluctuation of thermal light found by A. Einstein.
We propose a quantum-enhanced iterative (with $K$ steps) measurement scheme based on an ensemble of $N$ two-level probes which asymptotically approaches the Heisenberg limit $delta_K propto R^{-K/(K+1)}$, $R$ the number of quantum resources. The prot ocol is inspired by Kitaevs phase estimation algorithm and involves only collective manipulation and measurement of the ensemble. The iterative procedure takes the shot-noise limited primary measurement with precision $delta_1propto N^{-1/2}$ to increasingly precise results $delta_Kpropto N^{-K/2}$. A straightforward implementation of the algorithm makes use of a two-component atomic cloud of Bosons in the precision measurement of a magnetic field.
96 - V. Lebedev , F. Renzoni 2011
We investigate experimentally a two-dimensional rocking ratchet for cold atoms, realized by using a driven three-beam dissipative optical lattice. AC forces are applied in perpendicular directions by phase-modulating two of the lattice beams. As pred icted by the general theory [S. Denisov et al., Phys. Rev. Lett. 100, 224102 (2008)], we observe a rectification phenomenon unique to high-dimensional rocking ratchets, as determined by two single-harmonic drivings applied in orthogonal directions. Also, by applying two bi-harmonic forces in perpendicular directions, we demonstrate the possibility of generating a current in an arbitrary direction within the optical lattice plane.
98 - F. Suzuki-Vidal 2010
We present experimental results on the formation of supersonic, radiatively cooled jets driven by pressure due to the toroidal magnetic field generated by the 1.5 MA, 250 ns current from the MAGPIE generator. The morphology of the jet produced in the experiments is relevant to astrophysical jet scenarios in which a jet on the axis of a magnetic cavity is collimated by a toroidal magnetic field as it expands into the ambient medium. The jets in the experiments have similar Mach number, plasma beta and cooling parameter to those in protostellar jets. Additionally the Reynolds, magnetic Reynolds and Peclet numbers are much larger than unity, allowing the experiments to be scaled to astrophysical flows. The experimental configuration allows for the generation of episodic magnetic cavities, suggesting that periodic fluctuations near the source may be responsible for some of the variability observed in astrophysical jets. Preliminary measurements of kinetic, magnetic and Poynting energy of the jets in our experiments are presented and discussed, together with estimates of their temperature and trapped toroidal magnetic field.
E.V. Kozik and B.V. Svistunov (KS) paper Symmetries and Interaction Coefficients of Kelvin waves, arXiv:1006.1789v1, [cond-mat.other] 9 Jun 2010, contains a comment on paper Symmetries and Interaction coefficients of Kelvin waves, V. V. Lebedev and V . S. Lvov, arXiv:1005.4575, 25 May 2010. It relies mainly on the KS text Geometric Symmetries in Superfluid Vortex Dynamics}, arXiv:1006.0506v1 [cond-mat.other] 2 Jun 2010. The main claim of KS is that a symmetry argument prevents linear in wavenumber infrared asymptotics of the interaction vertex and thereby implies locality of the Kelvin wave spectrum previously obtained by these authors. In the present note we reply to their arguments. We conclude that there is neither proof of locality nor any refutation of the possibility of linear asymptotic behavior of interaction vertices in the texts of KS.
391 - Andrea Ciardi 2008
Collimated outflows (jets) are ubiquitous in the universe appearing around sources as diverse as protostars and extragalactic supermassive blackholes. Jets are thought to be magnetically collimated, and launched from a magnetized accretion disk surro unding a compact gravitating object. We have developed the first laboratory experiments to address time-dependent, episodic phenomena relevant to the poorly understood jet acceleration and collimation region. The experimental results show the periodic ejections of magnetic bubbles naturally evolving into a heterogeneous jet propagating inside a channel made of self-collimated magnetic cavities. The results provide a unique view of the possible transition from a relatively steady-state jet launching to the observed highly structured outflows.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا