ترغب بنشر مسار تعليمي؟ اضغط هنا

262 - C. D. Weis , C. C. Lo , V. Lang 2012
We have performed continuous wave and pulsed electron spin resonance measurements of implanted bismuth donors in isotopically enriched silicon-28. Donors are electrically activated via thermal annealing with minimal diffusion. Damage from bismuth ion implantation is repaired during thermal annealing as evidenced by narrow spin resonance linewidths (B_pp=12uT and long spin coherence times T_2=0.7ms, at temperature T=8K). The results qualify ion implanted bismuth as a promising candidate for spin qubit integration in silicon.
Electrically detected magnetic resonance is used to identify recombination centers in a set of Czochralski grown silicon samples processed to contain strained oxide precipitates with a wide range of densities (~ 1e9 cm-3 to ~ 7e10 cm-3). Measurements reveal that photo-excited charge carriers recombine through Pb0 and Pb1 dangling bonds and comparison to precipitate-free material indicates that these are present at both the sample surface and the oxide precipitates. The electronic recombination rates vary approximately linearly with precipitate density. Additional resonance lines arising from iron-boron and interstitial iron are observed and discussed. Our observations are inconsistent with bolometric heating and interpreted in terms of spin-dependent recombination. Electrically detected magnetic resonance is thus a very powerful and sensitive spectroscopic technique to selectively probe recombination centers in modern photovoltaic device materials.
257 - C. C. Lo , V. Lang , R. E. George 2010
We have measured the electrically detected magnetic resonance of channel-implanted donors in silicon field-effect transistors in resonant X- ($9.7:$GHz) and W-band ($94:$GHz) microwave cavities, with corresponding Zeeman fields of $0.35:$T and $3.36: $T, respectively. It is found that the conduction electron resonance signal increases by two orders of magnitude from X- to W-band, while the hyperfine-split donor resonance signals are enhanced by over one order of magnitude. We rule out a bolometric origin of the resonance signals, and find that direct spin-dependent scattering between the two-dimensional electron gas and neutral donors is inconsistent with the experimental observations. We propose a new polarization transfer model from the donor to the conduction electrons as the main contributer to the spin resonance signals observed.
401 - J. Sailer , A. Wild , V. Lang 2010
We present a systematical experimental investigation of an unusual transport phenomenon observed in two dimensional electron gases in Si/SiGe heterostructures under integer quantum Hall effect (IQHE) conditions. This phenomenon emerges under specific experimental conditions and in different material systems. It is commonly referred to as Hall resistance overshoot, however, lacks a consistent explanation so far. Based on our experimental findings we are able to develop a model that accounts for all of our observations in the framework of a screening theory for the IQHE. Within this model the origin of the overshoot is attributed to a transport regime where current is confined to co-existing evanescent incompressible strips of different filling factors.
We report on the realization and top-gating of a two-dimensional electron system in a nuclear spin free environment using 28Si and 70Ge source material in molecular beam epitaxy. Electron spin decoherence is expected to be minimized in nuclear spin-f ree materials, making them promising hosts for solid-state based quantum information processing devices. The two-dimensional electron system exhibits a mobility of 18000 cm2/Vs at a sheet carrier density of 4.6E11 cm-2 at low temperatures. Feasibility of reliable gating is demonstrated by transport through split-gate structures realized with palladium Schottky top-gates which effectively control the two-dimensional electron system underneath. Our work forms the basis for the realization of an electrostatically defined quantum dot in a nuclear spin free environment.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا