ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-linear Zeeman splitting of neutral excitons is observed in composition engineered In(x)Ga(1-x)As self-assembled quantum dots and its microscopic origin is explained. Eight-band k.p simulations, performed using realistic dot parameters extracted f rom cross-sectional scanning tunneling microscopy, reveal that a quadratic contribution to the Zeeman energy originates from a spin dependent mixing of heavy and light hole orbital states in the dot. The dilute In-composition (x<0.35) and large lateral size (40-50 nm) of the quantum dots investigated is shown to strongly enhance the non-linear excitonic Zeeman gap, providing a blueprint to enhance such magnetic non-linearities via growth engineering.
146 - D. Heiss , V. Jovanov , F. Klotz 2010
We demonstrate all optical electron spin initialization, storage and readout in a single self-assembled InGaAs quantum dot. Using a single dot charge storage device we monitor the relaxation of a single electron over long timescales exceeding 40{mu}s . The selective generation of a single electron in the quantum dot is performed by resonant optical excitation and subsequent partial exciton ionization; the hole is removed from the quantum dot whilst the electron remains stored. When subject to a magnetic field applied in Faraday geometry, we show how the spin of the electron can be prepared with a polarization up to 65% simply by controlling the voltage applied to the gate electrode. After generation, the electron spin is stored in the quantum dot before being read out using an all optical implementation of spin to charge conversion technique, whereby the spin projection of the electron is mapped onto the more robust charge state of the quantum dot. After spin to charge conversion, the charge state of the dot is repeatedly tested by pumping a luminescence recycling transition to obtain strong readout signals. In combination with spin manipulation using fast optical pulses or microwave pulses, this provides an ideal basis for probing spin coherence in single self-assembled quantum dots over long timescales and developing optimal methods for coherent spin control.
Strong electrically tunable exciton g-factors are observed in individual (Ga)InAs self-assembled quantum dots and the microscopic origin of the effect is explained. Realistic eight band k.p simulations quantitatively account for our observations, sim ultaneously reproducing the exciton transition energy, DC Stark shift, diamagnetic shift and g-factor tunability for model dots with the measured size and a comparatively low In-composition of x(In)~35% near the dot apex. We show that the observed g-factor tunability is dominated by the hole, the electron contributing only weakly. The electric field induced perturbation of the hole wavefunction is shown to impact upon the g-factor via orbital angular momentum quenching, the change of the In:Ga composition inside the envelope function playing only a minor role. Our results provide design rules for growing self-assembled quantum dots for electrical spin manipulation via electrical g-factor modulation.
134 - F. Klotz , V. Jovanov , J. Kierig 2010
A highly asymmetric dynamic nuclear spin pumping is observed in a single self assembled InGaAs quantum dot subject to resonant optical pumping of the neutral exciton transition leading to a large maximum polarization of 54%. This dynamic nuclear pola rization is found to be much stronger following pumping of the higher energy Zeeman state. Time-resolved measurements allow us to directly monitor the buildup of the nuclear spin polarization in real time and to quantitatively study the dynamics of the process. A strong dependence of the observed dynamic nuclear polarization on the applied magnetic field is found, with resonances in the pumping efficiency being observed for particular magnetic fields. We develop a model that fully accounts for the observed behaviour, where the pumping of the nuclear spin system is due to hyperfine-mediated spin flip transitions between the states of the neutral exciton manifold.
104 - D. Heiss , V. Jovanov , M. Caesar 2009
We report the investigation of a single quantum dot charge storage device. The device allows selective optical charging of a single dot with electrons, storage of these charges over timescales much longer than microseconds and reliable optical readou t of the charge occupancy using a time gated photoluminescence technique. This device enables us to directly investigate the electric field dependent tunneling escape dynamics of electrons at high electric fields over timescales up to 4 us. The results demonstrate that such structures and measurement techniques can be used to investigate charge and spin dynamics in single quantum dots over microsecond timescales.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا