ترغب بنشر مسار تعليمي؟ اضغط هنا

We have performed mid-infrared imaging of Barnards Star, one of the nearest stars to the Sun, using CanariCam on the 10.4 m Gran Telescopio Canarias. We aim to investigate an area within 1-10 arcsec separations, which for the 1.83 pc distance of the star translates to projected orbital separations of 1.8-18 AU (P > 12 yr), which have not been explored yet with astrometry or radial velocity programs. It is therefore an opportunity to enter the domain of distances where most giant planets are expected to form. We performed deep imaging in the N-band window (Si-2 filter, 8.7 {mu}m) reaching a 3{sigma} detection limit of 0.85+/-0.18 mJy and angular resolution of 0.24 arcsec, close to the diffraction limit of the telescope at this wavelength. A total of 80 min on-source integration time data were collected and combined for the deepest image. We achieved a dynamical range of 8.0+/-0.1 mag in the 8.7 {mu}m band, at angular separations from ~2 to 10 arcsec and of ~6-8 mag at 1-2 arcsec. No additional sources were found. Our detectability limits provide further constraints to the presence of substellar companions of the Barnards Star. According to solar metallicity evolutionary models, we can exclude companions of masses larger than 15 MJup (Teff > 400 K), ages of a few Gyr, and located in ~3.6-18 AU orbits with a 3{sigma} confidence level. This minimum mass is approximately 5 MJup smaller than any previous imaging survey that explored the surroundings of Barnards Star could restrict.
We present a deep I,Z photometric survey covering a total area of 1.12 deg^{2} of the Sigma Orionis cluster (Icompl=22 and Zcompl=21.5mag). From I, I-Z color-magnitude diagrams we have selected 153 candidates that fit the previously known sequence of the cluster. Using J-band photometry, we find that 124 of the 151 candidates follow the previously known infrared photometric sequence of the cluster and are probably members. We have studied the spatial distribution of these candidates and found that there are objects located at distances greater than 30 arcmin to the north and west of Sigma Orionis that probably belong to different populations of the Orions Belt. For the 102 bona fide Sigma Orionis cluster member candidates, we find that the radial surface density can be represented by a decreasing exponential function (sigma = sigma_0 e^{-r/r_0}) with a central density of sigma_0=0.23+/-0.03 object/arcmin^{2} and a characteristic radius of r_0=9.5+/-0.7 arcmin. From a statistical comparison with Monte Carlo simulations, we conclude that the spatial distribution of the cluster member candidates is compatible with a Poissonian distribution and, hence, they are not mainly forming aggregations or sub-clustering. Using near-infrared JHK-band data from 2MASS and UKIDSS and mid-infrared data from IRAC/Spitzer, we find that 5-9 % of the brown dwarf candidates in the Sigma Orionis cluster have K-band excesses and 31+/-7 % of them show mid-infrared excesses at wavelengths longer than 5.8 microns, which are probably related to the presence of disks. We have also calculated the initial mass spectrum (dN/dm) of Sigma Orionis from very low mass stars (0.10 Msol) to the deuterium-burning mass limit (0.012-0.013 Msol). This is a rising function toward lower masses and can be represented by a power-law distribution (dN/dm = m^{-alpha}) with an exponent alpha of 0.7+/-0.3 for an age of 3 Myr.
We report on near-infrared J- and H-band linear polarimetric photometry of eight ultracool dwarfs (two late-M, five L0-L7.5, and one T2.5) with known evidence for photometric variability due to dust clouds, anomalous red infrared colors, or low-gravi ty atmospheres. The polarimetric data were acquired with the LIRIS instrument on the William Herschel Telescope. We also provide mid-infrared photometry in the interval 3.4-24 micron for some targets obtained with Spitzer and WISE, which has allowed us to confirm the peculiar red colors of five sources in the sample. We can impose modest upper limits of 0.9% and 1.8% on the linear polarization degree for seven targets with a confidence of 99%. Only one source, 2MAS, J02411151-0326587 (L0), appears to be strongly polarized (P ~ 3%) in the J-band with a significance level of P/sigma_P ~ 10. The likely origin of its linearly polarized light and rather red infrared colors may reside in a surrounding disk with an asymmetric distribution of grains. Given its proximity (66 +/- 8 pc), this object becomes an excellent target for the direct detection of the disk.
We present the discovery of a companion near the deuterium burning mass limit located at a very wide distance, at an angular separation of 4.6+/-0.1 arcsec (projected distance of ~ 670 AU) from UScoCTIO108, a brown dwarf of the very young Upper Scorp ius association. Optical and near-infrared photometry and spectroscopy confirm the cool nature of both objects, with spectral types of M7 and M9.5, respectively, and that they are bona fide members of the association, showing low gravity and features of youth. Their masses, estimated from the comparison of their bolometric luminosities and theoretical models for the age range of the association, are 60+/-20 and 14^{+2}_{-8} MJup, respectively. The existence of this object around a brown dwarf at this wide orbit suggests that the companion is unlikely to have formed in a disk based on current planet formation models. Because this system is rather weakly bound, they did not probably form through dynamical ejection of stellar embryos.
(Abridged) The nature of S Ori 70, a faint mid-T type object found towards the direction of the young sigma Orionis cluster, is still under debate. We intend to disentangle whether it is a field brown dwarf or a 3-Myr old planetary-mass member of the cluster. We report on near-infrared JHK_s and mid-infrared [3.6] and [4.5] IRAC/Spitzer photometry recently obtained for S Ori 70. The new near-infrared images (taken 3.82 yr after the discovery data) have allowed us to derive a very small proper motion (11.0 +/- 5.9 mas/yr) for this object, which is consistent with the proper motion of the cluster within 1.5 sigma the astrometric uncertainty. The colors (H-K_s), (J-K_s) and K_s-[3.6] appear discrepant when compared to T4-T7 dwarfs in the field. This behavior could be ascribed to a low-gravity atmosphere or alternatively to an atmosphere with a metallicity significantly different than solar. Taking into account the small proper motion of S Ori 70 and its new near- and mid-infrared colors, a low-gravity atmosphere remains as the most likely explanation to account for our observations. This supports S Ori 70s membership in sigma Orionis, with an estimated mass in the interval 2-7 Mjup, in agreement with our previous derivation.
We investigate the mass function in the substellar domain down to a few Jupiter masses in the young sigma Orionis open cluster (3+/-2 Ma, d = 360^+70_-60 pc). We have performed a deep IJ-band search, covering an area of 790 arcmin^2 close to the clus ter centre. This survey was complemented with an infrared follow-up in the HKs- and Spitzer 3.6-8.0 mum-bands. Using colour-magnitude diagrams, we have selected 49 candidate cluster members in the magnitude interval 16.1 mag < I < 23.0 mag. Accounting for flux excesses at 8.0 mum and previously known spectral features of youth, 30 objects are bona fide cluster members. Four are first identified from our optical-near infrared data. Eleven have most probable masses below the deuterium burning limit and are classified as planetary-mass object candidates. The slope of the substellar mass spectrum (Delta N / Delta M = a M^-alpha) in the mass interval 0.11 Msol M < 0.006 Msol is alpha = +0.6+/-0.2. Any opacity mass-limit, if these objects form via fragmentation, may lie below 0.006 Msol. The frequency of sigma Orionis brown dwarfs with circumsubstellar discs is 47+/-15 %. The continuity in the mass function and in the frequency of discs suggests that very low-mass stars and substellar objects, even below the deuterium-burning mass limit, may share the same formation mechanism.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا