ترغب بنشر مسار تعليمي؟ اضغط هنا

The accuracy of measuring the basic parameters of neutron stars is limited in particular by uncertainties in chemical composition of their atmospheres. For example, atmospheres of thermally - emitting neutron stars in supernova remnants might have ex otic chemical compositions, and for one of them, the neutron star in CasA, a pure carbon atmosphere has recently been suggested by Ho & Heinke (2009). To test such a composition for other similar sources, a publicly available detailed grid of carbon model atmosphere spectra is needed. We have computed such a grid using the standard LTE approximation and assuming that the magnetic field does not exceed 10^8 G. The opacities and pressure ionization effects are calculated using the Opacity Project approach. We describe the properties of our models and investigate the impact of the adopted assumptions and approximations on the emergent spectra.
All the neutron star (NS) atmosphere models published so far have been calculated in the cold plasma approximation, which neglects the relativistic effects in the radiative processes, such as cyclotron emission/absorption at harmonics of cyclotron fr equency. Here we present new NS atmosphere models which include such effects. We calculate a set of models for effective temperatures T_eff =1-3 MK and magnetic fields B sim 10^{10}-10^{11} G, typical for the so-called central compact objects (CCOs) in supernova remnants, for which the electron cyclotron energy E_{c,e} and its first harmonics are in the observable soft X-ray range. Although the relativistic parameters, such as kT_eff /(m_e c^2) and E_{c,e} /(m_e c^2), are very small for CCOs, the relativistic effects substantially change the emergent spectra at the cyclotron resonances, E approx sE_{c,e} (s=1, 2,...). Although the cyclotron absorption features can form in a cold plasma due to the quantum oscillations of the free-free opacity, the shape and depth of these features change substantially if the relativistic effects are included. In particular, the features acquire deep Doppler cores, in which the angular distribution of the emergent intensity is quite different from that in the cold plasma approximation. The relative contributions of the Doppler cores to the equivalent widths of the features grow with increasing the quantization parameter b_eff = E_{c,e}/kT_eff and harmonic number s. The total equivalent widths of the features can reach sim 150-250 eV; they increase with growing b_eff and are smaller for higher harmonics.
Some isolated neutron stars show harmonically spaced absorption features in their thermal soft X-ray spectra. The interpretation of the features as a cyclotron line and its harmonics has been suggested, but the usual explanation of the harmonics as c aused by relativistic effects fails because the relativistic corrections are extremely small in this case. We suggest that the features correspond to the peaks in the energy dependence of the free-free opacity in a quantizing magnetic field, known as quantum oscillations. The peaks arise when the transitions to new Landau levels become allowed with increasing the photon energy; they are strongly enhanced by the square-root singularities in the phase-space density of quantum states in the case when the free (non-quantized) motion is effectively one-dimensional. To explore observable properties of these quantum oscillations, we calculate models of hydrogen neutron star atmospheres with B sim 10^{10} - 10^{11} G (i.e., electron cyclotron energy E_{c,e} = 0.1 - 1 keV) and T_{eff} = 1 - 3 MK. Such conditions are thought to be typical for the so-called central compact objects in supernova remnants, such as 1E 1207.4-5209 in PKS 1209-51/52. We show that observable features at the electron cyclotron harmonics form at moderately large values of the quantization parameter, b_{eff} = E_{c,e}/kT_{eff} = 0.5 - 20. The equivalent widths of the features can reach 100 - 200 eV; they grow with increasing b_{eff} and are lower for higher harmonics.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا