ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a simple heuristic model for the time-averaged soft X-ray temperature distribution in the accretion spot on the white dwarf in polars. The model is based on the analysis of the Chandra LETG spectrum of the prototype polar AM Her and involv es an exponential distribution of the emitting area vs. blackbody temperature a(T) = a0 exp(-T/T0). With one free parameter besides the normalization, it is mathematically as simple as the single blackbody, but is physically more plausible and fits the soft X-ray and far-ultraviolet spectral fluxes much better. The model yields more reliable values of the wavelength-integrated flux of the soft X-ray component and the implied accretion rate than reported previously.
We used the large binocular camera (LBC) mounted on the large binocular telescope (LBT) to observe the Lockman Hole in the U, B, and V bands. Our observations cover an area of 925 sq.arcmin. We reached depths of 26.7, 26.3, and 26.3 mag(AB) in the th ree bands, respectively, in terms of 50% source detection efficiency, making this survey the deepest U-band survey and one of the deepest B and V band surveys with respect to its covered area. We extracted a large number of sources (~89000), detected in all three bands and examined their surface density, comparing it with models of galaxy evolution. We find good agreement with previous claims of a steep faint-end slope of the luminosity functions, caused by late-type and irregular galaxies at z>1.5. A population of dwarf star-forming galaxies at 1.5<z<2.5 is needed to explain the U-band number counts. We also find evidence of strong supernova feedback at high redshift. This survey is complementary to the r, i, and z Lockman Hole survey conducted with the Subaru telescope and provides the essential wavelength coverage to derive photometric redshifts and select different types of sources from the Lockman Hole for further study.
296 - J.M. Ramirez 2008
We present an analysis of our Chandra Low Energy Transmission Grating Spectrometer (LETGS) observation of the quasar MR2251-178. The warm absorber of MR2251-178 is well described by a hydrogen column density, N_H~2x10^21 cm^-2, and an ionization para meter log(xi)~0.6. We find in the spectrum weak evidence for narrow absorption lines from Carbon and Nitrogen which indicate that the ionized material is in outflow. We note changes (in time) of the absorption structure in the band (0.6-1) keV (around the UTAs plus the OVII and OVIII K-edges) at different periods of the observation. We measure a (0.1-2) keV flux of 2.58x10^-11 ergs cm^-2 s^-1. This flux implies that the nuclear source of MR2251-178 is in a relatively low state. No significant variability is seen in the light curve. We do not find evidence for an extra cold material in the line of sight, and set an upper limit of N_H~1.2x10^20 cm^-2. The X-ray spectrum does not appear to show evidence for dusty material, though an upper limit in the neutral carbon and oxygen column densities can only be set to N_CI~2x10^19 cm^-2 and N_OI~9x10^19 cm^-2, respectively.
104 - V. Burwitz 2008
The supersoft X-ray binary RX J0513.9-6951 shows cyclic changes between optical-low / X-ray-on states and optical-high / X-ray-off states. It is supposed to be accreting close to the Eddington-critical limit and driven by accretion wind evolution. We seek to derive the variations in the characteristic time scales of the long-term optical light curve and to determine the implications for the physical parameters of the system. We used existing and new optical monitoring observations covering a total time span of 14 years and compared the durations of the low and high states with the model calculations of Hachisu & Kato. The cycle lengths and especially the durations of the optical high states show a longterm modulation with variations that, according to the accretion wind evolution model, would imply variations in the mass transfer rate by a factor of 5 on timescales of years.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا