ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper infinite families of linear binary nested completely regular codes are constructed. They have covering radius $rho$ equal to $3$ or $4$, and are $1/2^i$-th parts, for $iin{1,ldots,u}$ of binary (respectively, extended binary) Hamming co des of length $n=2^m-1$ (respectively, $2^m$), where $m=2u$. In the usual way, i.e., as coset graphs, infinite families of embedded distance-regular coset graphs of diameter $D$ equal to $3$ or $4$ are constructed. In some cases, the constructed codes are also completely transitive codes and the corresponding coset graphs are distance-transitive.
In this paper new infinite families of linear binary completely transitive codes are presented. They have covering radius $rho = 3$ and 4, and are a half part of the binary Hamming and the binary extended Hamming code of length $n=2^m-1$ and $2^m$, r espectively, where $m$ is even. From these new completely transitive codes, in the usual way, i.e., as coset graphs, new presentations of infinite families of distance transitive coset graphs of diameter three and four, respectively, are constructed.
104 - J. Rifa , V. A. Zinoviev 2008
For any integer $rho geq 1$ and for any prime power q, the explicit construction of a infinite family of completely regular (and completely transitive) q-ary codes with d=3 and with covering radius $rho$ is given. The intersection array is also compu ted. Under the same conditions, the explicit construction of an infinite family of q-ary uniformly packed codes (in the wide sense) with covering radius $rho$, which are not completely regular, is also given. In both constructions the Kronecker product is the basic tool that has been used.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا