ترغب بنشر مسار تعليمي؟ اضغط هنا

In this study, we demonstrated experimentally that formation of chains and islands of oxygen vacancies in hafnium sub-oxides (HfO$_x$, $x<2$) leads to percolation charge transport in such dielectrics. Basing on the model of {E}fros-Shklovskii percola tion theory good quantitative agreement between the experimental and theoretical data of current-voltage characteristics were achieved. Based on the percolation theory suggested model shows that hafnium sub-oxides consist of mixtures of metallic Hf nanoscale clusters of 1-2 nm distributed onto non-stoichiometric HfO$_x$. It was shown that reported approach might describe low resistance state current-voltage characteristics of resistive memory elements based on HfO$_x$.
In this study, we demonstrated experimentally and theoretically that oxygen vacancies are responsible for the charge transport in HfO$_2$. Basing on the model of phonon-assisted tunneling between traps, and assuming that the electron traps are oxygen vacancies, good quantitative agreement between the experimental and theoretical data of current-voltage characteristics were achieved. The thermal trap energy of 1.25 eV in HfO$_2$ was determined based on the charge transport experiments.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا