ترغب بنشر مسار تعليمي؟ اضغط هنا

Provenance for database queries or scientific workflows is often motivated as providing explanation, increasing understanding of the underlying data sources and processes used to compute the query, and reproducibility, the capability to recompute the results on different inputs, possibly specialized to a part of the output. Many provenance systems claim to provide such capabilities; however, most lack formal definitions or guarantees of these properties, while others provide formal guarantees only for relatively limited classes of changes. Building on recent work on provenance traces and slicing for functional programming languages, we introduce a detailed tracing model of provenance for multiset-valued Nested Relational Calculus, define trace slicing algorithms that extract subtraces needed to explain or recompute specific parts of the output, and define query slicing and differencing techniques that support explanation. We state and prove correctness properties for these techniques and present a proof-of-concept implementation in Haskell.
Provenance is an increasing concern due to the ongoing revolution in sharing and processing scientific data on the Web and in other computer systems. It is proposed that many computer systems will need to become provenance-aware in order to provide s atisfactory accountability, reproducibility, and trust for scientific or other high-value data. To date, there is not a consensus concerning appropriate formal models or security properties for provenance. In previous work, we introduced a formal framework for provenance security and proposed formal definitions of properties called disclosure and obfuscation. In this article, we study refined notions of positive and negative disclosure and obfuscation in a concrete setting, that of a general-purpose programing language. Previous models of provenance have focused on special-purpose languages such as workflows and database queries. We consider a higher-order, functional language with sums, products, and recursive types and functions, and equip it with a tracing semantics in which traces themselves can be replayed as computations. We present an annotation-propagation framework that supports many provenance views over traces, including standard forms of provenance studied previously. We investigate some relationships among provenance views and develop some partial solutions to the disclosure and obfuscation problems, including correct algorithms for disclosure and positive obfuscation based on trace slicing.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا