ترغب بنشر مسار تعليمي؟ اضغط هنا

The growth of single layer graphene nanometer size domains by solid carbon source molecular beam epitaxy on hexagonal boron nitride (h-BN) flakes is demonstrated. Formation of single-layer graphene is clearly apparent in Raman spectra which display s harp optical phonon bands. Atomic-force microscope images and Raman maps reveal that the graphene grown depends on the surface morphology of the h-BN substrates. The growth is governed by the high mobility of the carbon atoms on the h-BN surface, in a manner that is consistent with van der Waals epitaxy. The successful growth of graphene layers depends on the substrate temperature, but is independent of the incident flux of carbon atoms.
We demonstrate the growth of graphene nanocrystals by molecular beam methods that employ a solid carbon source, and that can be used on a diverse class of large area dielectric substrates. Characterization by Raman and Near Edge X-ray Absorption Fine Structure spectroscopies reveal a sp2 hybridized hexagonal carbon lattice in the nanocrystals. Lower growth rates favor the formation of higher quality, larger size multi-layer graphene crystallites on all investigated substrates. The surface morphology is determined by the roughness of the underlying substrate and graphitic monolayer steps are observed by ambient scanning tunneling microscopy.
Imaging ellipsometry studies of graphene on SiO2/Si and crystalline GaAs are presented. We demonstrate that imaging ellipsometry is a powerful tool to detect and characterize graphene on any flat substrate. Variable angle spectroscopic ellipsometry i s used to explore the dispersion of the optical constants of graphene in the visible range with high lateral resolution. In this way the influence of the substrate on graphenes optical properties can be investigated
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا