ترغب بنشر مسار تعليمي؟ اضغط هنا

(Abridged) Based on the rapidly increasing all-sky data of Faraday rotation measures and polarised synchrotron radiation, the Milky Ways magnetic field is now modelled with an unprecedented level of detail and complexity. We aim to complement this he uristic approach with a physically motivated, quantitative Galactic dynamo model -- a model that moreover allows for the evolution of the system as a whole, instead of just solving the induction equation for a fixed static disc. Building on the framework of mean-field magnetohydrodynamics and extending it to the realm of a hybrid evolution, we perform three-dimensional global simulations of the Galactic disc. Closure coefficients embodying the mean-field dynamo are calibrated against resolved box simulations of supernova-driven interstellar turbulence. The emerging dynamo solutions comprise a mixture of the dominant axisymmetric S0 mode, with even parity, and a subdominant A0 mode, with odd parity. Notably, such a superposition of modes creates a strong localised vertical field on one side of the Galactic disc. We moreover find significant radial pitch angles, which decay with radius -- explained by flaring of the disc. In accordance with previous work, magnetic instabilities appear to be restricted to the less-stirred outer Galactic disc. Their main effect is to create strong fields at large radii such that the radial scale length of the magnetic field increases from 4 kpc (for the case of a mean-field dynamo alone) to about 10 kpc in the hybrid models. There remain aspects (e.g., spiral arms, X-shaped halo fields, fluctuating fields) that are not captured by the current model and that will require further development towards a fully dynamical evolution. Nevertheless, the work presented demonstrates that a hybrid modelling of the Galactic dynamo is feasible and can serve as a foundation for future efforts.
Supernovae are the dominant energy source for driving turbulence within the interstellar plasma. Until recently, their effects on magnetic field amplification in disk galaxies remained a matter of speculation. By means of self-consistent simulations of supernova-driven turbulence, we find an exponential amplification of the mean magnetic field on timescales of a few hundred million years. The robustness of the observed fast dynamo is checked at different magnetic Reynolds numbers, and we find sustained dynamo action at moderate Rm. This indicates that the mechanism might indeed be of relevance for the real ISM. Sensing the flow via passive tracer fields, we infer that SNe produce a turbulent alpha effect which is consistent with the predictions of quasilinear theory. To lay a foundation for global mean-field models, we aim to explore the scaling of the dynamo tensors with respect to the key parameters of our simulations. Here we give a first account on the variation with the supernova rate.
Within the interstellar medium, supernovae are thought to be the prevailing agents in driving turbulence. Until recently, their effects on magnetic field amplification in disk galaxies remained uncertain. Analytical models based on the uncorrelated-e nsemble approach predicted that any created field would be expelled from the disk before it could be amplified significantly. By means of direct simulations of supernova-driven turbulence, we demonstrate that this is not the case. Accounting for galactic differential rotation and vertical stratification, we find an exponential amplification of the mean field on timescales of several hundred million years. We especially highlight the importance of rotation in the generation of helicity by showing that a similar mechanism based on Cartesian shear does not lead to a sustained amplification of the mean magnetic field.
Supernovae are known to be the dominant energy source for driving turbulence in the interstellar medium. Yet, their effect on magnetic field amplification in spiral galaxies is still poorly understood. Previous analytical models, based on the evoluti on of isolated, non-interacting supernova remnants, predicted a dominant vertical pumping that would render dynamo action improbable. In the present work, we address the issue of vertical transport, which is thought to be the key process that inhibits dynamo action in the galactic context. We aim to demonstrate that supernova driving is a powerful mechanism to amplify galactic magnetic fields. We conduct direct numerical simulations in the framework of resistive magnetohydrodynamics. Our local box model of the interstellar medium comprises optically-thin radiative cooling, an external gravitational potential, and background shear. Dynamo coefficients for mean-field models are measured by means of passive test fields. Our simulations show that supernova-driven turbulence in conjunction with shear leads to an exponential amplification of the mean magnetic field. We found turbulent pumping to be directed inward and approximately balanced by a galactic wind.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا