ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a comprehensive theoretical study of the static spin response in HgTe quantum wells, revealing distinctive behavior for the topologically nontrivial inverted structure. Most strikingly, the q=0 (long-wave-length) spin susceptibility of the undoped topological-insulator system is constant and equal to the value found for the gapless Dirac-like structure, whereas the same quantity shows the typical decrease with increasing band gap in the normal-insulator regime. We discuss ramifications for the ordering of localized magnetic moments present in the quantum well, both in the insulating and electron-doped situations. The spin response of edge states is also considered, and we extract effective Lande g-factors for the bulk and edge electrons. The variety of counter-intuitive spin-response properties revealed in our study arises from the systems versatility in accessing situations where the charge-carrier dynamics can be governed by ordinary Schrodinger-type physics, mimics the behavior of chiral Dirac fermions, or reflects the materials symmetry-protected topological order.
We have obtained analytical expressions for the q-dependent static spin susceptibility of monolayer transition metal dichalcogenides, considering both the electron-doped and hole-doped cases. Our results are applied to calculate spin-related physical observables of monolayer MoS2, focusing especially on in-plane/out-of-plane anisotropies. We find that the hole-mediated RKKY exchange interaction for in-plane impurity-spin components decays with the power law $R^{-5/2}$ as a function of distance $R$, which deviates from the $R^{-2}$ power law normally exhibited by a two-dimensional Fermi liquid. In contrast, the out-of-plane spin response shows the familiar $R^{-2}$ long-range behavior. We also use the spin susceptibility to define a collective g-factor for hole-doped MoS2 systems and discuss its density-dependent anisotropy.
96 - R. Winkler , U. Zulicke 2009
We show that pseudo-spin 1/2 degrees of freedom can be categorized in two types according to their behavior under time reversal. One type exhibits the properties of ordinary spin whose three Cartesian components are all odd under time reversal. For t he second type, only one of the components is odd while the other two are even. We discuss several physical examples for this second type of pseudo-spin and highlight observable consequences that can be used to distinguish it from ordinary spin.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا