ترغب بنشر مسار تعليمي؟ اضغط هنا

145 - John A. ZuHone 2014
X-ray astronomy is an important tool in the astrophysicists toolkit to investigate high-energy astrophysical phenomena. Theoretical numerical simulations of astrophysical sources are fully three-dimensional representations of physical quantities such as density, temperature, and pressure, whereas astronomical observations are two-dimensional projections of the emission generated via mechanisms dependent on these quantities. To bridge the gap between simulations and observations, algorithms for generating synthetic observations of simulated data have been developed. We present an implementation of such an algorithm in the yt analysis software package. We describe the underlying model for generating the X-ray photons, the important role that yt and other Python packages play in its implementation, and present a detailed workable example of the creation of simulated X-ray observations.
The flat spectrum radio quasar (FSRQ) PKS 0208-512 underwent three outbursts at the optical-near-infrared (OIR) wavelengths during 2008-2011. The second OIR outburst did not have a gamma-ray counterpart despite being comparable in brightness and temp oral extent to the other two. We model the time variable spectral energy distribution of PKS 0208-512 during those three flaring episodes with leptonic models to investigate the physical mechanism that can produce this anomalous flare. We show that the redder-when-brighter spectral trend in the OIR bands can be explained by the superposition of a fixed thermal component from the accretion disk and a synchrotron component of fixed shape and variable normalization. We estimate the accretion disk luminosity at L_d ~8 X 10^45 erg/s. Using the observed variability timescale in the OIR band t_{var,obs} ~2 d and the X-ray luminosity L_X ~3.5 X 10^45 erg/s, we constrain the location of the emitting region to distance scales that are broadly comparable with the dusty torus. We show that variations in the Compton dominance parameter by a factor of ~4 --- which may result in the anomalous outburst --- can be relatively easily accounted for by moderate variations in the magnetic field strength or the location of the emission region. Since such variations appear to be rare among FSRQs, we propose that most gamma-ray/OIR flares in these objects are produced in jet regions where the magnetic field and external photon fields vary similarly with distance along the jet, e.g., u_B ~u_ext ~r^{-2}.
180 - M. Stiavelli 2009
We study the clustering properties of the first galaxies formed in the Universe. We find that, due to chemical enrichment of the inter-stellar medium by isolated Population III stars formed in mini-halos at redshift z>30, the (chronologically) first galaxies are composed of metal-poor Population II stars and are highly clustered on small scales. In contrast, chemically pristine galaxies in halos with mass M~10^8 M_sun may form at z<20 in relatively underdense regions of the Universe. This occurs once self-enrichment by Population III in mini-halos is quenched by the build-up of an $H_2$ photo-dissociating radiative background in the Lyman-Werner bands. We find that these chemically pristine galaxies are spatially uncorrelated. Thus, we expect that deep fields with the James Webb Space Telescope may detect clusters of chemically enriched galaxies but individual chemically pristine objects. We predict that metal-free galaxies at 10 <= z <= 15$ have surface densities of about 80 per square arcmin and per unit redshift but most of them will be too faint even for JWST. However, the predicted density makes these objects interesting targets for searches behind lensing clusters.
The hot nuclear matter created at the Relativistic Heavy Ion Collider (RHIC) has been characterized by near-perfect fluid behavior. We demonstrate that this stands in contradiction to the identification of QCD quasi-particles with the thermodynamic d egrees of freedom in the early (fluid) stage of heavy ion collisions. The empirical observation of constituent quark ``$n_q$ scaling of elliptic flow is juxtaposed with the lack of such scaling behavior in hydrodynamic fluid calculations followed by Cooper-Frye freeze-out to hadrons. A ``quasi-particle transport time stage after viscous effects break down the hydrodynamic fluid stage, but prior to hadronization, is proposed to reconcile these apparent contradictions. However, without a detailed understanding of the transitions between these stages, the ``$n_q$ scaling is not a necessary consequence of this prescription. Also, if the duration of this stage is too short, it may not support well defined quasi-particles. By comparing and contrasting the coalescence of quarks into hadrons with the similar process of producing light nuclei from nucleons, it is shown that the observation of ``$n_{q}$ scaling in the final state does not necessarily imply that the constituent degrees of freedom were the relevant ones in the initial state.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا